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ABSTRACT  

In this paper an innovative and fast method to tackle aeroelastic problems dealing with 

aircrafts is presented. This procedure is based on the use of the finite volume commercial 

solver ANSYS Fluent coupled with the RBF Morph tool capable to manage the structural 

displacement of aircraft deformable structures by properly imposing a combination of their 

modes through mesh morphing. Before running the FSI analysis, the modal basis of the 

structures is computed by means of a FEM solver and then imported into the morpher. During 

the CFD computing stage, these modes are combined and applied on the fly by morphing the 

mesh of the computational model so as to gain the deformed configuration. Mesh morphing is 

accomplished according to the radial basis function mathematical technique, whilst the 

surface aerodynamic loading is determined by performing the integration of modal forces 

directly on the CFD surface mesh.  

The major benefit of proposed approach is that, to make the CFD model intrinsically elastic 

during the calculation phase, the modal parameterization has to be built only once so as to 

drastically reduce the computation time.  

This process was applied to a real case, tested in steady flow regime conditions, with the 

purpose to characterize the accuracy as well as the reliability of the proposed approach. The 

modal approximation error was monitored and a very satisfactory agreement between 

numerical and experimental data was finally observed. 

 

Keywords: Radial Basis Functions (RBF), Fluid Structure Interaction (FSI), Modal 

Superposition 

1 INTRODUCTION 

The demand for developing multi-disciplinary approach using high fidelity computer-aided 

engineering (CAE) methods is today strongly rising in a widespread range of technical fields 

including aerospace, automotive, marine, product manufacturing and healthcare to name a 

few. This is even more true with the vision of modern design methods which is strongly 

oriented to work embedded in reliable numerical optimization procedures. The core of a 
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multi-physics numerical investigation is the coupled-field analysis, which lets users to 

determine the combined effects of multiple physical phenomena as in case fluid–structure, 

thermal–mechanical, and electric–thermal interaction.  

In particular, the fluid-structure interaction (FSI) is the interaction of movable or deformable 

structures with an internal or a surrounding fluid flow [1] occurring at different length scales. 

Such an interaction can be the working principle of the component itself (reed valves action, 

parachute canopy unfolding, movement of a sheet of paper within a printing device) or can be 

exploited to finely tune components manufacturing in view of lightening a structure as in case 

of aircraft design. 

FSI is a typical multi-physics phenomenon which computational reproduction implies, at 

least, the resolution of both the structural and fluid-dynamic task and, when temperature 

effects are relevant, the thermal one as well. In general, the approaches to accomplish its 

numerical solution can be roughly grouped depending upon governing equations solution 

approach (monolithic and partitioned methods) and upon the treatment of meshes (conforming 

and non-conforming mesh methods) [2]. Besides, FSI perspectives [3] may vary depending on 

types of flow fields covered (such as compressible, incompressible, laminar, turbulent), types 

of applications, structural fields (such as thin-walled, rigid bodies, non-linear material), 

discretization schemes (such as finite volume, spectral methods, multi-body dynamics), flow 

modelling assumptions (such as continuum, statistical Lattice Boltzmann distribution) and 

calculation grid treatment (such as moving grid, fixed grid, immersed boundary). 

Whatever the particular scenario of the study, the FSI analysis introduces a high level of 

complexity in the solution achievement and, as such, either the fluid forces or structural 

deformations are often neglected. Since in the aerodynamics sector this mechanism turns out 

to be crucial in many cases, both physical aspects need to be suitably accounted and, for this 

reason, sensible efforts have been done to this end over last decades.  

One of the most delicate tasks during an FSI analysis is the movement of the computational 

fluid dynamic (CFD) mesh that needs to be updated in order to accommodate elastic 

deformations of the structure. A robust algorithm with this potential is represented by the 

radial basis functions (RBFs) mesh morphing, as described by the Keye’ work [4] in which a 

complete aircraft was studied accounting for FSI in flight conditions. In the proposed 

approach, the method of RBFs is used for updating the CFD mesh in the deformed shape 

calculated by using the finite element method (FEM) modelling. Although several works 

[5,6,7] demonstrated that RBFs can be successfully adopted for the deformation of CFD 

meshes, the resulting  numerical cost has limited their actual application to tackle industrial 

relevant cases in the past (direct solution grows by N
3
 where N is the number of RBF centres). 

To this end, many efforts have been recently devoted to the acceleration of such a method to 

deal with large RBF dataset [8,9]. 

In order to efficiently handle aeroelastic studies through the CFD tool ANSYS
®
 Fluent

®
 

(hereinafter referred to as Fluent), the numerical approach proposed in the present paper 

makes use of the RBFs technique by linking the CFD model to the RBF Morph
TM

 tool. The 

coupling between these codes has recently proven its powerful capabilities and effectiveness 

by solving with success challenging engineering applications such as surface vehicle and 

aircraft shape design and optimisation [10,11,12], sails trim optimisation [13] and ice 

accretion on aircraft wings [14]. The suggested FSI numerical process fruitfully exploits the 

RBF Morph™ tool that enables to adapt the shape of deformable parts according to mode 

superposition method by smoothing mesh directly during the computing stage. 
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2 MODAL ANALYSIS OF DISCRETE SYSTEMS AND MODE 

SUPERPOSITION  

The modal analysis is a well-established theory of the structural mechanics.  It is  applicable 

to both continuum and discrete systems and enables the calculation of undamped free 

vibration modes of a system (an object or structure), each characterized by a natural pattern 

(shape) and frequency.  

In FEM modelling, where the behaviour of continuum systems is simulated by operating with 

their discrete representation, the modal analysis enables to determine the structural static and 

dynamic response in linearity conditions. In particular, a structure has a number of modes 

equal to its total number of degrees of freedom (DOF). If the damping is null and loads are 

not time-dependent, nodal amplitudes (modes) {u} and natural frequencies of a structure can 

be computed by solving the eigenvalue problem mathematically identified by the system 

                 
where     is the stiffness matrix, ω

2
 is an eigenvalue, ω is a natural frequency, and     is the 

mass matrix of the system, stating that a vibration mode is a configuration in which a balance 

between elastic resistance and inertial loads [15] occurs. 

Considering the purpose of this technique, a subset of the first modes is commonly 

determined and used because, since mechanical systems are characteristically low-pass, the 

lowest frequency modes have the highest energy levels and, then, are physically prominent. 

As such, the complete solution of the eigenvalue problem can be approximated retaining only 

a limited number of its lowest modes with a favourable reduction of DOF to be treated. 

Moreover, since the solution of the eigenvalue problem is a subspace of eigenvectors 

problem, the sign and the entity of each eigenvector may change depending on the algorithm 

adopted for the solution achievement [16]. Given that, for solution purposes a convenient 

normalization is performed by imposing for each m-th mode      a unit modal mass so as to 

obtain 

    
            

and then 

    
           

   
One of most important aspects of modal analysis is the spectral decomposition, which means 

that modes are orthogonal and form a basis in the modal coordinates (or displacements)   

[15]. In this case, the dynamic response of a mechanical system can be represented by the 

summation of the response of each mode. As a matter of fact, because of the orthogonality of 

the basis, each mode acts as a single DOF dynamic system (i.e. stiffness and mass matrixes 

become diagonal) and then the following system relationship is valid [16] 

                 
or alternatively  

      
                        

being     and     respectively the nodes’ acceleration and the displacement in modal 

coordinates, and Nm the modal force for the m-th mode. 

The modal approach is usually exploited for handling dynamic analyses in which the number 

of retained modes is defined on the basis of excited frequencies. Nevertheless, it can be 

usefully employed even for approximating a static solution by superposing modes assuming 

the linear behaviour of the analysed system. In this specific scenario, the latter equation 

simplifies as follows 

  
       

and modal forces N are obtained performing the integral of the external load field over the 

entire structure Q weighted by the mode eigenvector      as follows 
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This latter concept means that the local force contributes to a mode if the force excites an 

active region (peak or valley of modal response over the space), and alternatively provides a 

null contribution if the force falls within an inactive region (nodal lines of the mode). 

3 RADIAL BASIS FUNCTIONS 

Since their inception [17], RBFs have been used as an interpolation tool of n-dimensional 

space scattered data, that is a mathematical means able to interpolate everywhere a scalar 

function defined at discrete points ensuring, at the same time, its exact value at original 

points. In particular, RBF methods were originated with the main purpose to overcome the too 

severe constraints of data treatable by numerical methods existing in the 1970s, such as the 

minimalism of their framework and the simplicity of the shape of their containing region. 

Afterwards, they experienced a very rapid development consequent to their successful 

application in a lot of scientific fields such as climate modelling, facial recognition, 

topographical map production, ocean floor mapping, and medical imaging, being resolving in 

many cases where polynomial interpolation failed [18]. 

According to a first categorization, the numerous existing RBFs can be nowadays classified 

on the basis of their local or global interpolation scheme and on the type of support (global or 

compact) they have, namely the set of points where the chosen RBF is non zero-valued [6].  

In general, the solution of the RBF mathematical problem consists of calculation of the scalar 

parameters (sought coefficients) of the linear system of order equal to the number of 

considered centres [19] (source points). According to the strategy adopted by the proposed 

morpher tool (RBF Morph™), the RBF system solution, determined after defining a set of 

source points with their displacement, is employed to operate mesh morphing to the 

discretized domain of the computational model. Operatively, once the RBF system 

coefficients have been calculated, the displacement of an arbitrary node of the mesh, either 

inside (interpolation) or outside (extrapolation) the influence domain of source points, can be 

expressed as the summation of the radial contribution of each. In such a way, a desired 

modification of the mesh nodes position (smoothing) can be rapidly applied by preserving 

mesh topology in terms of total number and type of the constituting elements. As example, 

Figure 1 shows the localization of source nodes of the selected test case described hereafter. 

 

Figure 1. Source nodes for RBFs solutions generation of the test case 

To afford a three-dimensional study in x, y and z coordinates, the RBF Morph™ tool utilises 

the RBF interpolant composed by a radial function (first term of the right side of the next 

equation) containing the RBF φ and a multivariate polynomial corrector vector h of order m-

1, where m is said to be the order of φ, introduced with the aim to guarantee the compatibility 

for rigid motions. In particular, if N is the total number of introduced source points, the 

formulation of the RBF Morph™ interpolant is 
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where   is the vector identifying the position of a generic node belonging to the surface and/or 

volume mesh,     is the i-th source node position vector, and    | is the Euclidean norm, 

namely the distance between two points. The RBF fitting solution exists in case the RBF 

coefficients vector γi and the weights of the polynomial corrector vector βi can be found such 

that, at source points, the interpolant function possesses the specified (known) values of 

displacement gi whilst the polynomial terms give a null contribution, namely the following 

relations are simultaneously verified 

                      

           

 

   

     

for all polynomials q with a degree less than or equal to that of polynomial h [6]. The minimal 

degree of polynomial h depends on the choice of the RBF type. It can be demonstrated that a 

unique RBF interpolant exists if the RBF is conditionally positive definite [20]. In the case 

that this latter condition is established and if the order is less than or equal to 2 [21], a linear 

polynomial applies 

                    
enabling to exactly recover rigid body translations.  

In the event such assumptions are verified, the interpolant has the form 

                                 

 

   

           

and γi and βi values can be obtained by solving the system 

 
  
   

  
 
    

 
 
  

where M is the interpolation matrix having the elements derived by calculating all the radial 

interactions between source points as follows 

                                       

and P is a constraint matrix that arises balancing the polynomial contribution containing a 

column of 1 and the spatial  positions of source points in the remaining three columns, that is 

  

 

 

          
          
    
           

    

assuming that source points are not contained in the same plane (otherwise the interpolation 

matrix would be singular). 

For what described, by satisfying the displacement field prescribed at source points, RBF 

Morph™ operates the smoothing of mesh nodes using the following formulation of the 

interpolant 
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In the end, RBF methods have shown several advantages that make them very attractive in the 

area of mesh smoothing. One of the most important is that, because of their meshless scheme, 

only the grid points are moved regardless of the volume cells they belong to, as well as 

regardless of specific key features that can be involved in smoothing such as, for instance, 

non-conformal interfaces. 

Furthermore, they also are particularly suitable for parallel implementation and so potentially 

able to manage huge cases. As a matter of fact, once RBF solutions are known and shared in 

memory, each calculation process working on a mesh partition has the ability to smooth its 

nodes without taking care of what happens outside, because the smoother is a global point 

function and the continuity at interfaces is then implicitly guaranteed. As an example Cella & 

Biancolini [12] stressed the RBF solver using a set-up of about 430.000 points to morph a 14 

million hexahedrons mesh that means about 14 million of nodes. It takes 1337 s to fit and 

5445 s to morph on a quadcore. 

4 DESCRIPTION OF THE PROPOSED NUMERICAL ANALYSIS STRATEGY 

The workflow of the proposed approach conceived to handle FSI numerical studies is 

composed by the following sequential three stages (Figure 2): 

Stage1: modes calculation (FEM solver). 

Stage2: RBF solutions generation and storing (RBF Morph™). 

Stage3: FSI computing using the CFD flexible model embedding RBF solutions (Fluent 

coupled with RBF Morph™). 

In Stage1, structural modes of deformable parts are calculated and extracted by means of a 

FEM model. To achieve an effective coupling in Stage3, this model has to be defined using 

position orientation and units compatible with the CFD one. As a consequence, the starting 

geometry, if any, has to be the same also in the event different mesh spacing is adopted 

because the RBF approach is meshless [22]. Generally speaking, in fact, the CFD model 

requires a refinement of the wetted surfaces finer than the FEM one, and then these meshes 

are typically not conformal for relevant industrial applications. As such, an interpolation is 

required for exchanging information that, for standard aeroelastic coupling, is bi-directional in 

the sense that pressure distribution computed through CFD have to be mapped onto the FEM 

mesh, whilst deformations calculated through FEM have to be used to update CFD surface 

shapes adjusting the volume mesh accordingly. 
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Figure 2. Workflow of the FSI proposed approach 

In Stage2 the morphing problem is fully defined, namely the RBF solution is calculated for 

each mode by applying to the deformable surfaces the displacements of the corresponding 

mode gained through the FEM model, and constraining the surfaces considered behaving as 

rigid by imposing a zero motion. Since an adequate level of mesh quality after smoothing is 

required by the CFD solver, some of RBF Morph™ parameters and features, such as source 

point’s density and dimensions of the domain interested by the morphing action, shall have to 

be properly tuned. Once calculated, all RBF solutions are stored and ready to be embedded in 

the CFD model.  

In Stage3 the FSI coupling is enabled. The stored RBF solutions are loaded once at the 

beginning of the step so as making elastic the CFD model , that is capable to adapt its shape 

when loaded. As concerns mesh updating, a proper scheduling needs to be carefully 

considered because on the one hand mesh updating introduces a small numerical noise and, on 

the other hand, it is not required at every iteration (steady analysis) or timestep (unsteady 

analysis). 

This crucial operation is straightforward executed because the structural response is evaluated 

directly in the modal space according to the following relation 

                 

      

   

 

where XCFD0 are the position of CFD nodes of undeformed mesh (baseline configuration), ηm 

are the (unknown) values of modal coordinates and δXm are the modal displacements for the 

generic retained m-th mode. Since according to the proposed approach CFD forces are 

demanded, they are evaluated using nodal conversion instead of employing the standard flow 

loading mapping. This operation allows to avoid the high-demanding efforts related to 

mapping and it is straightforwardly accomplished by means of Fluent user defined functions 

(UDFs). In detail, a loop over all faces to calculate the resulting force accumulated at each 

node is performed by taking into account the contribution coming from each connected face, 

assuming an uniform value on one single face. For what just described, modal forces Nm are 

calculated as follows 
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where the m-th modal load is a scalar obtained summing the dot product between nodal load 

and nodal mode displacement of each i node of nsurf  nodes of the surface. Considering that a 

mass normalization criterion was defined for modes extraction, the modal coordinates are 

   
  
  

 
 

and the parametric CFD mesh can adapt its shape on the basis of actual loads according to the 

following relationship 

            
  
  
 
   

      

   

  

It is worth mentioning that, since FEM results are transferred onto a set of CFD model 

surfaces adopting a multiple local problem scheme, the pressure loading coming from 

different areas can be managed separately if required. Such an approach allows to efficiently 

handle important FSI applications where relative sliding motion among parts of wetted 

surfaces occurs.  

Besides, the whole approach is general in the sense that it can be also applied to unsteady 

analyses modifying the time scheduling for smoothing application. 

5 TEST CASE 

To showcase the effectiveness and efficiency of the proposed technique in solving  real world 

aircraft FSI applications, one of the configurations of the Aeroelastic Prediction Workshop 

[23] (AePW), launched with the main purpose to assess the capability of the most advanced 

numerical methods in predicting static and dynamic aeroelastic phenomena and responses, 

was simulated. In particular, the test case of interest is referred to as HIgh REynolds Number 

Aero-Structural Dynamics [24] (HIRENASD) and consisted of a tapered 34 degrees aft-swept 

wing with a BAC3-11/RES/30/21 supercritical airfoil profile specifically designed to achieve 

high structural stiffness and distant modes on frequency domain. The real model, shown in 

Figure 3, was tested in the Cologne European Transonic Wind tunnel (ETW) for a Mach 

number ranging from 0.8 to 0.88. 

 

 

Figure 3. HIRENASD wind tunnel model 

In order to carry out all the afore-described steps of the FSI study, FEM and CFD grids as 

well as the testing parameters, provided to support AePW participants, were employed. 
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In the view of obtaining the modal basis, a tetrahedral FEM model of the assembly defined by 

the wing, the excitation system and the balance was adopted, and the first six mass normalized 

modes were extracted using NX Nastran. Wing modal shapes and their respective frequencies 

are shown in Figure 4 (horizontal view), where B and FA respectively stand for out-of-plane 

bending and in-plane fore-and-aft bending according to AePW mode classification. 

 
Mode 1 – 1B - 25.5 Hz 

 
Mode 2 – 2B - 80.2 Hz 

 
Mode 3 – 1FA - 106.1Hz 

 
Mode 4 – 3B - 160.3 Hz 

 
Mode 5 – 4B - 241.9 Hz 

 
Mode 6 – 2FA - 252.2 Hz 

 

Figure 4. Mode number, description, frequencies and modal shapes for the HIRENASD FEM model 

 

FEM grid nodal displacements of modal shapes were applied to the wing CFD surface mesh 

of the CFD model through RBF Morph™ utilizing results data exported according to Nastran 

format. Moreover, since in both the wind tunnel and the FEM model the fuselage 

aerodynamic fairing is mechanically uncoupled from the wing root so that a slight motion of 

the wing root is allowed, a small portion of the fuselage around the wing of the CFD model 

was left free to deform using a buffer so as to absorb the required motion. Figure 5 depicts the 

CFD model morphed according to the mode 2 superposed to the baseline configuration. The 

image clearly evidences the buffer around the wing root as well as the box-shaped 

encapsulation domain [25] suitably generated to limit the morphing action. The total number 

of source nodes of the optimized set-up was about 4500.  

 

 
Figure 5. Morphed configuration corresponding to structural mode 2 

 

The FSI computing was divided in two subsequent simulation phases that ran on a mixed 1.5 

million cell SOLAR unstructured grid made available by German Aerospace Center (DLR) 

and The National Aeronautics and Space Administration (NASA). In particular, at first a 

conventional CFD simulation was carried out using the stiff model to gain a fully developed 

field, whereas in a second phase the elastic behaviour of the model was finally taken into 

account by embedding the RBF solutions (see Figure 2). This strategy was adopted to 
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accelerate the CFD convergence in the second phase since the initial CFD field for the 

flexible computing was realistically supposed not to be far from the final one. 

The FSI analysis parameters proposed by AePW were 0.8 Mach with a 7·10
6
 Reynolds 

number based on the 0.3445 m reference chord. To reach the required Reynolds number, as 

suggested in the reference workshop, the simulation was carried out using Nitrogen at 136180 

Pa and 278.5 K as test medium. Given the transonic condition of the problem, a steady 

pressure based implicit solver was utilized with the roe-FDS flux scheme, using the Green-

Gauss node based spatial discretization for the gradient and the second order upwind scheme 

as a test medium for the flow and the modified turbulent viscosity. The Spalart Allmaras 

single equation model was applied for turbulence and the pressure far-field boundary 

condition was imposed to the hemispheric patch enclosing the symmetric calculation domain. 

On wing and fuselage surfaces a no-slip condition was set. The model simulated a 1.5 degrees 

angle of attack (AoA). The direct integration of modal forces on the CFD mesh and the mesh 

updating process were invoked every 25 iterations (setting-up a calculation activity feature of 

Fluent), and throughout the simulation aerodynamic coefficients and the position of sensible 

nodes on wing were monitored and stored for validation purposes. 

In order to obtain a preliminary judgment of the accuracy of results obtained through modal 

superposition, the maximum displacement of wing at tip, calculated through up to 6 modes, 

was compared to the one achieved using a full two-way coupling envisaging the use of data 

mapping (Table 1). The achieved results evidence how each added mode reduces the error 

improving the matching with the reference deformed shape obtained by full two-way 

coupling. The lowest achievable error was registered once having included up to four modes.  

 
Number of modes Maximum wing 

displacement (mm) 

Relative error 

(%) 

1 15.26 -5.64 

2 14.18 1.81 

3 14.18 1.80 

4 14.26 1.29 

5 14.26 1.29 

6 14.26 1.29 

Full two-way 

approach (mapping) 

14.44 - 

Table 1. Basis validation of the first 6 modes with respect to mapping  

 

Convergence with the CFD elastic model was reached after only 5 mesh updating iterations 

using the first 6 modes mainly to minimize the error. A final displacement of 0.01274 m was 

obtained.  This result is in good agreement with the 0.0125 m displacement evidenced by 

experimental data  [26]. 

In Table 2 the strong influence of the elastic behavior in aerodynamic coefficients evaluation 

is shown by taking into account the rigid and elastic model responses. Lift and drag 

coefficients computed using the proposed approach are favorably compared to literature 

numerical values [26]. 

 
Aerodynamic 

coefficient 

Rigid model Elastic model 

Proposed 

model 

NASA 

model 

Proposed 

model 

NASA 

model 

Cl 0.3572 0.3542 0.3403 0.3373 

Cd 0.0167 0.0173 0.0160 0.0166 

Cm -0.5596 -0.5516 -0.5307 -0.5231 

Table 2. Comparison of numerical obtained aerodynamic coefficients 
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In Figure 6 the pressure coefficient distribution obtained at different sections on the CFD 

elastic model is plotted in conjunction with the corresponding value measured by experiments 

and available in literature [26]. Specifically, from left to right and from top to bottom, these 

sections refer respectively to wing span ξ equal to 14.5% (Section 1), 32.3% (Section 2), 

65.5% (Section 5) and 95.3% (Section 7). As evident, data alignment turns out to be very 

satisfying. 

 

  
Section 1 Section 2 

  
Section 5 Section 7 

Figure 6. Comparison between numerical and experimental data at different wing sections  

 

The pressure coefficient values computed at the same sections of the previous figure by 

means of the rigid and elastic model, plotted respectively through a continuous trait and 

circles, are illustrated in Figure 7. 

 

  
Section 1 Section 2 
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Section 5 Section 7 

Figure 7. Pressure coefficients for the rigid and the elastic HIRENASD model at different span 

sections. 

These results highlight the importance of an aeroelastic analysis especially for the outer 

sections of the wing, where the alteration introduced by elasticity cannot be neglected. 

The whole Fluent simulation was completed in 876 iterations, whose most part (780 

iterations) were performed using the rigid model whilst the flexible model experienced the 

wing shape updating for four times. For what described, the actual aeroelastic simulation took 

only 96 iterations to converge, meaning that the proposed approach allows fulfilling a FSI 

calculation with a computational cost comparable with that of a rigid one. 

6 CONCLUDING REMARKS 

An aeroelastic numerical procedure to efficiently and reliably simulate real world aircraft FSI 

applications was proposed and described. In order to validate this novel calculation procedure, 

a well-tested wind tunnel case was simulated in transonic flow conditions and the results 

obtained by numerical modelling have been favourably compared to those measured during 

the referenced experimental campaign. 

The added value offered by the proposed technique is its ability to make flexible the Fluent 

computational model embedding the structural modes of deformable parts preventively 

calculated using a FEM tool code by means of the RBF Morph™ tool. 

Indeed, this latter technique easily couples the modes shape to the mesh of the computational 

grid (surface and volume) by a smoothing action. The main advantage with respect to other 

standard approaches is that the modal parameterization has to be built only once. The final 

result is that the new CFD model becomes intrinsically elastic during the calculation stage.  

Finally, the proposed FSI approach can be suitably applied to both steady and unsteady 

aeroelastic studies and its use can be extended to very large models where RBF Morph™ has 

already proven its computational time efficiency.  
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