

Human Body Models customization by advanced mesh morphing: parametric THUMS

Master's degree in Mechanical Engineering A.Y. 2022/2023

SUPERVISOR

Prof. Ing. Marco E. Biancolini

CO-SUPERVISOR

Ing. Emanuele Di Meo

STUDENT GRADUATING

Emanuele Lombardi

Introduction

- Vehicle safety: injury predictions
- Injury prediction tools
- Crash tests: ATDs
 (Anthropometric test devices)

Introduction

- Vehicle safety: injury predictions
- Injury prediction tools

Crash tests: HBMs

 (Human body
 Models)

HBMs vs ATDs

- ✓ Complete Anatomy → accuracy
- ✓ Omnidirectionality → Flexible usage
- A Small number of shape avaiable

Small number of shape

Small size adult female

Shape corresponding to the 5th statistical anthropometric percentile

Small number of shape

Middle size adult male

Shape corresponding to the 50^{th} statistical anthropometric percentile

Small number of shape

Large size adult male

Shape corresponding to the 95th statistical anthropometric percentile

Small range of shape

 In the development of HBMs, most antrhopometric shapes have ramained inexplored

Human Body Models customization

- Developed by TOYOTA → open source since 2021
- Advanced features

Internal organs geometry extremely detailed

 Complete modeling of muscolar function through one-dimensional elements activated by feedback controllers

Mesh composed of over 2 milion elements

 $\ ^{\blacksquare}$ Unique shapes avaiable for male models: 50^{th} e 95^{th} statistical anthopometric percentile

Objective

 Define a method to create THUMS corresponding to the generic percentile

RBF mesh morphing

Through RBF mesh morphing, it is possible to modify a discretized geometry by imposing the displacement of a certain number of its nodes

Mesh Morphing driven by RBF

Example:

Mesh Morphing driven by RBF

Example:

RBF

Source points selection

Source points in AM50

Homologous edges in AM95

RBF displacements

Combining the 2 operations \longrightarrow Displacements: D_{50-95}

Parametric mesh morphing

- δ : modulation parameter
- D_{50-P} : source points displacement in the mesh morphing to the generic percentile

$$D_{50-P} = \delta * D_{50-95}$$

With δ varying linearly between 0 and 1 from the 50^{th} to the 95^{th} statistical anthropometric percentile

Mesh morphing implementation

Automatic procedure in 4 phases:

1. Setting

Definition

Writing

Setting

Reading the LS-DYNA simulation K-FILE relative to THUMS AM50

Source points coordinates

Definition

Source points coordinates

PTS-FILE

Esecution

Target points coordinates

Writing

Writing the new simulation K-FILE

- **AM50m95:** mesh morphing to 95^{th} percentile \rightarrow 100 kg
- AM50m75: mesh morphing to 75^{th} percentile \rightarrow 89 kg
- **AM50m35:** mesh morphing to 35^{th} percentile \rightarrow 65 kg

Results

Geometry quality: AM50m95 vs AM95

Results: MDA and MDM

Body areas comparison			
area	MDA [mm]	MDM [mm]	MDA/MDM
Busto	7.10	24.36	29%
Viso	4.05	11.45	35%
Spalla	3.42	9.06	37%
Stinco	1.68	3.14	53%
Cassa toracica	1.97	6.31	31%
Ossa pelviche	2.48	7.52	32%
Average	3.65	8.46	34%

Results: kinematic analysis

- Linear influence
- Differences introduced by the mesh morphing 0.8 mm/percentile

Results: kinematic analysis

S_{mean} related to the AM95 [mm]			
Control points	AM50	AM50m95	
Bacino	55.89	8.57	
Collo	54.71	6.67	
Busto-spalla destra	61.72	9.87	
Busto-spalla sinistra	58.36	4.34	
	•••	•••	
Stinco-caviglia destra	17.31	13.91	
Stinco-caviglia sinistra	17.84	14.70	
Piede destra	18.97	19.62	
Piede sinistra	18.99	19.62	
Average	34.42	7.84	

Conclusion

- Method
- Method efficiency
- Choices effectiveness

Thanks for your attention