ANSYS (rbf-morph)[™]

High performance RBF mesh morphing solutions to face typical aerospace problems

Ubaldo Cella

HANSYS

Geometry parameterization

- CAD driven
- Mesh morphing

CAD driven approach

Main advantages

- Accurate geometry quality control
- High constraints setup flexibility
- No "back to CAD" required

Main disadvantage

- Complex and not generalizable setup
- Highly skilled CAD user required
- Robustness
- Remesh required
 - Structured grids
 - Simple geometries

Mesh morphing

(rbf-morph) ANSYS

RBF mesh morphing

Main advantages

- No re-meshing
- Can handle any kind of mesh (meshless method)
- Can be integrated in the CFD solver
- Highly parallelizable
- Robust process (consistency)
- Main disadvantage
 - Limitation in the deformation amplitude
 - Computationally expensive (HPC for large grids)
 - Back to CAD procedure required
 - Uncertainness in the capability to setup complex parameterizations

RBF background

RBF - class of functions introduced as interpolators of scattered data

RBF background

$$s(\boldsymbol{x}_{\boldsymbol{s}_i}) = \boldsymbol{g}_{\boldsymbol{s}_i}, \ h(\boldsymbol{x}_{\boldsymbol{s}_i}) = 0 \qquad 1 \le i \le N$$

- A radial basis fit exists if
 - desired values are matched at source points
 - with the orthogonality condition
- The fit problem is associated with the solution of a linear system
 - **M** is the interpolation matrix
 - **P**_s is the constraint matrix

$$\boldsymbol{M}_{ij} = \varphi\left(\left\|\boldsymbol{x}_{s_i} - \boldsymbol{x}_{s_j}\right\|\right), 1 \le i, j \le N$$

$$\sum_{i=1}^{N} \gamma_i = \sum_{i=1}^{N} \gamma_i x_{s_i} = \sum_{i=1}^{N} \gamma_i y_{s_i} = \sum_{i=1}^{N} \gamma_i z_{s_i} = 0$$

$$\begin{pmatrix} \boldsymbol{M} & \boldsymbol{P}_{\boldsymbol{s}} \\ \boldsymbol{P}_{\boldsymbol{s}}^{T} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\gamma} \\ \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} \boldsymbol{g}_{\boldsymbol{s}} \\ \boldsymbol{0} \end{pmatrix}$$

$$\boldsymbol{P}_{\boldsymbol{s}} = \begin{pmatrix} 1 & x_{s_1} & y_{s_1} & z_{s_1} \\ 1 & x_{s_2} & y_{s_2} & z_{s_2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{s_N} & y_{s_N} & z_{s_N} \end{pmatrix}$$

ANSYS

Radial functions

RBF with compact support

- Local interactions
- Sparse systems of equations to be solved

Name	Abbreviation	$\phi(\zeta)$
Wendland C ⁰	C0	$(1 - \epsilon \zeta)^2$
Wendland C^2	C2	$(1 - \epsilon \zeta)^4 (4\epsilon \zeta + 1)$
Wendland C^4	C4	$(1-\epsilon\zeta)^6(rac{35}{3}\epsilon\zeta^2+6\epsilon\zeta+1)$

Table I. Compactly supported RBF

RBF with global support

- Far field interactions
- Dense system of equations to be solved

Name	Abbreviation	$\phi(r)$	
Polyharmonic spline	PHS	r^n , n odd	
		$r^n log(r), n$ even	
Thin plate spline	TPS	$r^2 log(r)$	
Multiquadric biharmonics	MQB	$\sqrt{a^2 + (\epsilon r)^2}$	
Inverse multiquadric biharmonics	IMQB	$\frac{1}{\sqrt{a^2+(cr)^2}}$	
Quadric biharmonics	QB	$1 + (\epsilon r)^2$	
Inverse quadric biharmonics	IQB	$\frac{1}{1+(\epsilon r)^2}$	
Gaussian biharmonics	GS	$e^{-\epsilon r^2}$	

Table II. Globally supported RBF

Cost of the RBF solution

- The fit has a cost of order N^3 for a direct fit (full populated matrix).
 - limit to ~10.000 the number of source points that can be used in a practical problem.

Methods to accelerate RBF solutions:

- Limit the number of source points
- Iterative solvers with a pre-conditioner -> cost of order N^2 (practical limits ~70.000 nodes).
- Space partitioning and POU decomposition (up to ~300.000 nodes).
- Fast pre-conditioner building and FMM (Fast Multipole Method) RBF approximation.
- Distributing the calculation on multiple cores (CPU and GPU)

Welcome to the World of Fast Morphing!

Biancolini M.E. (2018), *Fast radial basis functions for engineering applications*, Springer. ISBN 978-3-319-75009-5, https://doi.org/10.1007/978-3-319-75011-8.

Marco Evangelos Burcollai

Fast Radial

Basis Functions

for Engineering

C fpringer

Applications

Two ANSYS-integrated solutions

SNV

Fluent Add On

- Released in 2009
- Fully integrated within Fluent (GUI, TUI & solving stage), Workbench and Adjoint Solver
- Multi physics features (FSI)

Fast RBF mesh morphing technology that makes the mesh shape parametric with a few clicks. Basic and hierarchical shape modifications defined in the tree. Automatic shape optimisation now included.

ACT Extension

NNSYS

- Released in 2015
- Fully embedded in ANSYS Mechanical (parametric)
- Benefits of underlying geometry (or aux geo with dead meshes)
- ...Workbench Meshing

How it works

Setup

- Select fixed and moving walls by source points
- Prescribe the displacements (or a combination of)

Fitting

- Solving the RBF system and storing the solution

Smoothing

- Application of the morphing action on surfaces and volume

ANSYS

CAD controlled surfaces

Solver performance samples 2013

- 14 mill. cells, 60.000 points, PC 4 cpu 2.67 GHz
 - fitting time: **53 sec**. (serial)
 - smoothing: **3.5 min**.
- **50 mill.** cells, 30.000 points, HPC 140 cpu
 - fitting time: **25 sec**. (serial)
 - smoothing: **1.5 min**.
- 100 mill. cells, 200.000 points, HPC 256 cpu
 - fitting time: **25 min**.
 - smoothing: 5 min.
- Largest fitted cloud 2 mill. points on 32 cpu in 3 hours.
- Largest model morphed (in our knowledge) 700.mill. cells on 768 cpu in 45 min.

Perspectives for 2019...

Extend from SSE to AVX (from 128 bit up to 1024bit) ... -> target of 100 millions points with GPU

RBF Morph to face...

- Geometry parameterization
- Shape optimization
- 6DOF (small movements)
- Ice accretion
- CFD-CSM coupling
- Modal FSI analyses

Some examples: ...

•••

Aerodynamic shape optimization

Wing/fuselage interference

Reynolds 1.24 mill. (c 0.8 m) Alpha 8 deg

Problem setup

Optimized solution

10 cm 22 Efficiency 8 16 14 0.5 **TE modifier** LE modifier

	CL	C _D	E
Baseline	1.131	760 dc	14.9
Optimised	1.216	605 dc	20.1
Variation	+7.5%	-20.4%	+35.0%

21 © 2019 RBF Morph SRL

Adjoint coupling

Sensitivity with respect to normal displacement

Back to CAD

Fluid-Structure Interaction (FSI) analysis and validation

2-way Fluid-Structure Interaction

(rbf-morph) ANSYS

Modal FSI approach

FSI solutions validation

 $\begin{array}{cccc} \times & 1 \mod \\ & \times & 2 \mod \\ & & &$

Surface pressure

y/b = 0.6

(rbf-morph)

ANSYS

Aeroelastic shape optimization

Structural model

First RBF setup

Second step RBF setup

Results

Unsteady Fluid-Structure Interaction analysis

ANSYS

© 2019 RBF Morph SRL

Extreme morphing

Ice accretion

Nasa Lewice 2.0 validation results

3D RBF setup

HiReNASD

3D solution

Digital reconstruction

STL target projection

AIAA GMGW-2

2nd AIAA Geometry and Mesh Generation Workshop

Sponsored by the Meshing, Visualization, and Computational Environments Technical Committee

Shaping the Future of Aerospace

Case 3: OPAM-1 Parametric Remeshing

Objectives:

- explore the ability to rapidly and robustly mesh parametric variations of a geometry model.
- Rapid generation of geometry models.

Geometry parameterization

- 1. Fuselage width
- 2. Wing sweep
- 3. Pylon/pod position
- 4. Pod size

Baseline mesh

Fuselage width

- Two morphing actions applied in sequence:
 - Two step fuselage scaling
 - Restoring the inner wing shape by STL target tecnique

Wing sweep

Two-step procedure

- Streamwise displacement of a set of wing sections.
- Smoothing applying the stored RBF solution to the wing and rigidly shifting the fuselage/pod.

Pylon/pod position

Two morphing actions applied in sequence:

- Displacement of the group pod/pylon.
- Recovering of the wing shape by STL target technique.

atom-101

ANSYS

Simple scaling applied to the mesh nodes on the pod surface.

Computational resources required

Widen fuselage

Mesh Morphing performed in 405 + 235 = 10 minutes and 40 seconds (84 cores, 200 GB RAM)

Wing sweep

Mesh Morphing performed in 9 minutes and 30 seconds (84 cores, 200 GB RAM)

Move pylon/pod

Mesh Morphing performed in 103 + 75 = 2 minutes and 58 seconds (84 cores, 200 GB RAM)

Narrow pod

Mesh Morphing performed in 50 seconds (84 cores, 200 GB RAM)

Nautical application

Hemodynamic application

Collaboration with **BioCardioLab** Bioengineering dept. Monasterio Fundation

Conclusions

Challenge

• drawbacks of RBF mesh morphing approach:

- 1. Limitation in the deformation amplitude
- 2. Computationally expensive (HPC for large grids)
- 3. Back to CAD procedure required
- 4. Uncertainness in the capability to setup complex parameterizations
- .. what are the real limits?

Solution

• Study **complex** and **challenging** cases to provide a realistic **quantification of the limits** when faced adopting *RBF Morph*.

Results

- 1. RBF Morph showed good performance also in case of extreme morphing
- 2. RBF Morph solver offers performances that make mesh morphing competitive with remeshing approach
- 3. RBF Morph is capable to apply the RBF solutions to the starting CAD model
- 4. RBF Morph offer several tools that allow to setup very complex constrained parameterizations

Many thanks for your kind attention

goo.gl/1svYd

- twitter.com/RBFMorph
- linkedin.com/company/rbf-morph

In

youtube.com/user/RbfMorph

(rbf-morph) Welcome to the World of Fast Morphing!

Ubaldo Cella - ubaldo.cella@rbf-morph.com