Mesh morphing techniques for the numerical analysis of Flexible PCBs

Marco E. Biancolini, **Sandeep Medikonda**, Kelly Morgan, Ashutosh Srivastava & Stefano Porziani

2020 November 30 - December 4

AT THE EPICENTRE OF THE DIGITAL TRANSFORMATION OF INDUSTRY

> 36th INTERNATIONAL CAE CONFERENCE AND EXHIBITION

Outline

- Introduction
- Challenge and Goals
- RBF mesh morphing
- Mesh morphing workflow
 - Case 1: Galileo Board
- Applications and Results
 - Case 2: Analysis of FCB Cable
 - Case 3: Analysis of a Rigid Flex PCB
- Conclusions

Electronic industry needs

What are FCBs?

- Flexible Circuit Boards are distinctly patterned circuitry designed to connects different parts of an electronic device.
- Why FCB over traditional PCB?
 - Saves Space: 10% of the space and weight of an ordinary circuit board assembly.
 - Max. Reliability: FCBs require fewer interconnects.
 - Enhanced Capabilities: FCBs are compatible with virtually any type of connector and perform very well in extreme temperatures.

3

Challenges and Goals

- The detailed design is typically only available on a flat shape (ECAD) and
 - the boards are built with layered materials
 - traces have a complex configuration
 - complexity of modelling ranges from shell structures with traces mapped up to solid models with traces full represented
- Numerical modeling of such structures requires a full nonlinear analysis to deform the structure onto the installation shape (hours of simulation on HPC)
- There is a need for a clear and simple methodology to adapt the FEA mesh onto the curved shape while preserving the trace mapping and trace modeling typically used while working with Electronic-CAD files.
- In this study we explore the potential of advanced mesh morphing based on Radial Basis Functions.

RBF Morph software for ANSYS Mechanical

- Radial Basis Functions (RBF) are a mathematical tool capable of interpolating in a generic point in space using a function known in a discrete set of points (source points).
- The three components of a displacement field are interpolated to control and morph a mesh.
- ACT Extension fully integrated with ANSYS Mechanical implements Radial Basis Functions mesh Morphing
- Powered by a fast, parallel RBF solver that tackles any sized problem. Enables CAD based mesh morphing

$$\begin{cases} s_x(\mathbf{x}) = \sum_{i=1}^{N} \gamma_i^x \varphi(\mathbf{x} - \mathbf{x}_{k_i}) + \beta_1^x + \beta_2^x x + \beta_3^x y + \beta_4^x z \\ s_y(\mathbf{x}) = \sum_{i=1}^{N} \gamma_i^y \varphi(\mathbf{x} - \mathbf{x}_{k_i}) + \beta_1^y + \beta_2^y x + \beta_3^y y + \beta_4^y z \\ s_z(\mathbf{x}) = \sum_{i=1}^{N} \gamma_i^z \varphi(\mathbf{x} - \mathbf{x}_{k_i}) + \beta_1^z + \beta_2^z x + \beta_3^z y + \beta_4^z z \end{cases}$$

Case 1: Galileo Board

PCB tested: Galileo Board (11 Layers)

Target Geometries:

• Wavy Structure

Wrap Structure

2020, November 30 - December 4

Objective

For both Target Geometries, wrapping should be possible for:

- Shell Trace Mapping
- Solid Trace Mapping
- Solid Trace Modeling

Case 1: Solid Trace Mapping – Wavy (Morph Logic)

Morph Approach for Wavy Structure:

- An auxiliary Surface/Solid is defined to drive 2d morphing
- Curves are connected
- The 2d morphing action is propagated on the complete solid mesh by turning on Coordinate Filtering

could be not not forget that y	
Node Selection	
Scoping Method	Geometry Selection
Geometry	11 Bodies
Definition	
Transformation	Translation
Translation Definition	Manual
Delta x	0 mm
🗌 Delta y	0 mm
Delta z	0 mm
RBF Function	
Degree	1
Combine Select	
Acting On	Undeformed
If Selected Nodes Overlap	Override
Coord Filtering	Yes
Coordinate System	Coordinate System
Locked Coordinate	У
Locked Coordinate Value	0 mm
RBF Problem	
Source	520
Target	177287

Case 1: Solid Trace Mapping – Wrap (Morph Logic)

Morph Approach for Wrap Structure:

A 2 Step Process using RBF Morph:

- Create an Auxiliary Surface/Solid
- A 2 object RBF Morph Setup
 - Select the PCB
 - Turn on Coordinate Filtering
 - Select the RBF Source
 Edges

RBF Morph Set U	o - Wavy ource
etails of "RBF Target - Wavy"	
Node Selection	-
Scoping Method	Geometry Selection
Geometry	11 Bodies
Definition	
Transformation	Translation
Translation Definition	Manual
Delta x	0 mm
Delta y	0 mm
Delta z	0 mm
RBF Function	
Degree	1
Combine Select	
Acting On	Undeformed
If Selected Nodes Overlap	Override
Coord Filtering	Yes
Coordinate System	Coordinate System
Locked Coordinate	У
Locked Coordinate Value	0 mm
RBF Problem	
Source	520
Target	177287

Case 1: Shell Trace Mapping (Morph Logic)

INTERNATIONAL CAE CONFERENCE AND EXHIBITION | www.caeconference.com

Case 1: Shell Trace Mapping (Results)

Case 1: Shell Trace Mapping (Results)

Case 1: Solid Trace Mapping (Results)

Case 2: Analysis of an FCB Cable

Target Geometries: Installed Shape in the consumer electronics product

Objective

For the target geometry, wrapping should be possible for:

- Solid Trace Mapping
- Shell Trace Mapping

Case 2: FCB Cable (Shell – Morph Logic)

Mesh morphing approach:

- Boundary curves are connected to do a first morphing step
- The projection onto the target surface happens in the second and final morphing step

etails of "RBF Source"	
Node Selection	
Scoping Method	Geometry Selection
Geometry	4 Edges
General	
Transformation	Curve Targeting
Percentage	1
Invert	No
Method	Segment-wise
Geometry Selection	
Scoping Method	Geometry Selection
Geometry	4 Edges
RBF Function	100 DOI
Degree	1
Combine Select	
Acting On	Undeformed
If Selected Nodes Overlap	Override
Coord Filtering	No
RBF Problem	
Source	0
Target	504

Case 2: FCB Cable (Solid – Morph Logic)

Mesh morphing approach:

- An auxiliary Surface/Solid • is defined to drive 2d morphing
- Curves are connected •
- The 2d morphing action is ۲ propagated on the complete solid mesh by turning on Coordinate Filtering

RBF Morph Set U	Jp t 🛶		
letails of "RRF Tarnet"			
Node Selection			
Scoping Method	Geometry Selection		
Geometry	3 Bodies		
General	5 bodies	/ PRE Target Proview	
Transformation	Translation		
Translation Definition	Manual		
Delta x	0 in		
Delta y	0 in		
Delta z	0 in		
RBF Function			
Degree	1		
Combine Select			and the second second
Acting On	Undeformed		
If Selected Nodes Overlap	Override		
Coord Filtering	Yes		
Coordinate System	Global Coordinate System		
Locked Coordinate	x		
Locked Coordinate Value	0 in		
RBF Problem			
Source	408		
Target	61506	I RBF Source Preview	
etails of "RBF Source"			
Scoping Method	Geometry Selection		
Geometry	4 Edges		
General			
Transformation	Curve Targeting		
Percentage	1		
Invert	No		
Method	Segment-wise		
Geometry Selection			
Scoping Method	Geometry Selection		
Geometry	4 Edger		
Geonetry	4 Luges		
DRE Euroction			
RBF Function			

Case 2: FCB Cable (Shell Trace Mapping - Results)

Case 2: FCB Cable (Solid Trace Mapping - Results)

Imported Trace Average 8/28/2020 1:13 AM

> 0.333333 0.22222 0.11111

Trace Mapping on a flat Board moorted Tra (uninstalled state)

> Trace Mapping and Morphed Mesh of the flex PCB on the installed structure

Note: For the Solid case, an averaging scheme was used for material representation which showcases the capability of the Trace Mapping technology

werage

Case 3: Analysis of a Rigid-Flex PCB

PCB tested: Rigid-Flex PCB (Shell)

<u>**Target Geometries:**</u> Installed Shape in the consumer electronics product

Objective

For the target geometry (a 180-degree bend) of the structure has been performed for:

• Shell Trace Mapping

Case 3: Analysis of a Rigid-Flex PCB (Morph Logic)

Morph Approach for Rigid- Flex PCB:

 A more complicated (full 3D) Morph strategy is employed here as we are dealing with multiple bodies.

<u>Note:</u> The morphing is performed directly on the faces of the bodies with guides in the case of the flex (i.e., Sources along the edges)

cons of nor larger	
Node Selection	
Sconing Method	Geometry Selection
eometry	1 Body
eneral	,
ansformation	Rotation
otation System Definition	By Coordinate System
Angle	180°
Coordinate System	Coordinate System
is Used	V
F Function	·
ree	1
ombine Select	
ting On	Deformed
selected Nodes Overlap	Override
ord Filtering	No
tails of "RBF Target 2" 👓	
tails of "RBF Target 2" ·····	
ils of "RBF Target 2" ···· ode Selection oping Method	Geometry Selection
s of "RBF Target 2" ···· de Selection ping Method ometry	Geometry Selection
Is of "RBF Target 2" de Selection ping Method ometry heral	Geometry Selection 1 Body
Is of "RBF Target 2" de Selection pping Method ometry neral nsformation	Geometry Selection 1 Body Translation
ails of "RBF Target 2" lode Selection coping Method eometry eneral ansformation ansfation Definition	Geometry Selection 1 Body Translation Manual
ails of "RBF Target 2" lode Selection coping Method eometry eneral ansformation anslation Definition] Delta x	Geometry Selection 1 Body Translation Manual 0 in
ils of "RBF Target 2" ode Selection oping Method cometry eneral insformation insformation Delta x Delta y	Geometry Selection 1 Body Translation Manual 0 in 0 in
Is of "RBF Target 2" de Selection pping Method ometry neral nsformation nslation Definition Delta x Delta y Delta z	Geometry Selection 1 Body Translation Manual 0 in 0 in 0 in
ils of "RBF Target 2" ode Selection oping Method :ometry :neral insformation Delta x Delta y Delta z iF Function	Geometry Selection 1 Body Translation Manual 0 in 0 in 0 in 0 in
ils of "RBF Target 2" ode Selection oping Method cometry eneral ansformation anslation Definition Delta x Delta y Delta z 3F Function Egree	Geometry Selection 1 Body Translation Manual 0 in 0 in 0 in 1
ails of "RBF Target 2" tode Selection coping Method seometry seneral ransformation ranslation Definition Delta x Delta y Delta z LBF Function Segree combine Select	Geometry Selection 1 Body Translation Manual 0 in 0 in 0 in 1
ails of "RBF Target 2" lode Selection coping Method eometry eneral ansformation ansfation Definition Delta x Delta y Delta z BF Function egree ombine Select cting On	Geometry Selection 1 Body Translation Manual 0 in 0 in 1 1 Undeformed
ails of "RBF Target 2" tode Selection coping Method seometry seometry seneral ransformation Delta x Delta y Delta z BF Function Segree combine Select cuting On S Selected Nodes Overlap	Geometry Selection 1 Body Translation Manual 0 in 0 in 1 1 Undeformed Override

Case 3: Analysis of a Rigid-Flex PCB (Results)

Conclusions

- An advanced mesh morphing workflow based on radial basis function mesh morphing has been defined for curved/flexible PCB modelling
- Two strategies are considered
 - Use of **auxiliary 2d** geometry to guide the morphing process
 - **Full morphing** achieved by direct control of 3D shapes
- For all the geometries investigated the proposed approach gives good results both for the deformed shape and both for the traces representation
- The promising results observed in this initial study open to **further investigations** in this field:
 - Simplified **computation of strain and stress** by differentiating the RBF field.
 - Use of deformed configurations to **guide/restart full FEA structural** assessment.
- For more information:
 - marco.biancolini@rbf-morph.com
 - sandeep.medikonda@ansys.com

Mesh morphing techniques for the numerical analysis of Flexible PCBs

Marco E. Biancolini, **Sandeep Medikonda**, Kelly Morgan, Ashutosh Srivastava & Stefano Porziani

2020 November 30 - December 4

AT THE EPICENTRE OF THE DIGITAL TRANSFORMATION OF INDUSTRY

36th INTERNATIONAL CAE CONFERENCE AND EXHIBITION