37th INTERNATIONAL CAE CONFERENCE AND EXHIBITION

VICENZA, ITALY NOVEMBER 17 - 19 2021 HYBRID

Reshaping the DEMO Tokamak's TF Coil with high fidelity Multiphysics **CAE** and advanced mesh EVENT morphing

Corrado groth¹, Andrea Chiappa¹, Christian Bachmann², Francesco Maviglia², Valerio Tomarchio³, Marco Evangelos Biancolini¹

1. University of Rome Tor Vergata - 2. EUROfusion Consortium - 3. JT-60SA European Home Team

You are welcome to visit us!

I have heard that with fusion we can have our own stars

Have a look at the 3D printed prototype showing the effect of shape optimization

Visit the RBF Morph booth in the CAE Conference & Exhibition 2021

Introduction

- A DEMOnstration powerplant: the next step in EU's ambitious nuclear fusion power generation project
- DEMO will produce net electricity, design more challenging as compared to ITER: foreseen plasma power four times higher
- New technologies and concepts required. Divertor Tokamak Test (DTT) facility currently under design.

Introduction

- DEMO is a challenge from a technical and technological point of view for several reasons:
 - Multiphysics involved, often leading to a trade-off of opposing requirements
 - Unprecedented range of operation for each sub-system of the assembly
- In this presentation, we show an optimization strategy for the Toroidal Field (TF) coils of the Advanced Divertor Configurations (ADCs).

Introduction

- Target: best compromise between electromagnetic and structural compliance
- Ansys simulation tools to reach the final goal:
 - APDL for the electromagnetic and structural analysis of the basic ADC configurations for a preliminary stress assessment
 - Workbench + RBF Morph + APDL to define an optimal shape (isostress profile) for each TF coil progressively mixing the initial and the iso-stress shape of each ADC coil to find the best compromise between the two.

DEMO architecture

- Fusion reaction takes place inside the plasma: large amount of energy at the expense of a small portion of mass.
- Plasma is confined in a toroid chamber by magnetic fields
- Magnetic fields generated by superconductors: TF, PF, CS

 Superconductors arranged in arrays called Winding Packs (WP), cooled with supercritical helium

DEMO architecture

- Coils subject to enormous Lorenz forces
- Superconductors contained in steel casing to:
 - Shape the superconducting loops appropriately
 - Bear the impressive loads involved
- ADC designed to fulfill the first. We want to improve the latter.

 First step: ADC configurations used for Electromagnetic and structural analyses

2021, November 17 - 19 | Vicenza, Italy | Hybrid event

SN, DN, SF, SX Stress results

- Results were achieved on a numerical mesh counting ~1 Mil elements
- Basic configurations of all the ADCs studied: Single-Null (SN), Double-Null (DN), Snow-Flake (SF) and Super-X (SX)
- Electromagnetic analysis followed by structural study in APDL
- EM considering current flowing in TF coils only as happening during the magnetization stage. Lorentz forces on superconductors sent to structural analysis on same mesh

TF coil : EM model

TF coil : structural model

Electromagnetic analysis of Winding Pack (WP) to determine Lorentz forces

Two TF coil halves

 Structural analysis featuring contact between wedges and contact between WP and casing

One TF coil

ADC baseline stress results

 For each coil resultant radial force (RX) and resultant angular moments around the toroidal direction (MY):

Resultant component	SN	DN	SF	SX
RX (radial) [MN]	-860.211	-910.373	-917.155	-943.783
MY [MN•m]	341.530	0.182	9.053	1146.301

 Von Mises (VM) stresses over ADC casings reveals that large areas of material are above the assumed stress limit (700 MPa)

Iso-stress shape of the coil

- The optimal shape of a coil, structurally, has membrane stresses only when loaded
- Optimal iso-stress design has radius of curvature proportional to the radial coordinate at each point on the coil track*
- We can imagine for each ADC configuration an iso-stress profile, with the constraint of being always external and tangential wrt baseline

*Knoepfel, Heinz E. 2000. Magnetic fields: a comprehensive theoretical treatise for practical use ". John Wiley & Sons, New York, pp. 423-427

Iso-stress shape of the coil

Iso-stress shape is symmetric with respect to the horizontal plane

Bending-free design of the coils

- Both configurations of the DN (baseline and bending-free) are perfectly symmetric wrt the horizontal plane
- Bending-free configuration is more elongated than the original one, being equal the radial size

Bending-free design of the coils

Optimisation Workflow: aim

- Definition of a shape for the TF coils of the 4 cases (SN, DN, SF, SX) in-between the initial configuration and the iso-stress shape such to experience a stress state below a certain limit (σ_{VM} = 450 MPa) during magnetization
- A continuous transformation from the baseline to the isostress shape for each ADC case needs to be established
- A discrete number of TF coil configurations are extracted and considered for electromagnetic analysis (EM) and stress assessment

Optimisation Workflow: simplified model

symmetry plane

2021, November 17 - 19 | Vicenza, Italy | Hybrid event

INTERNATIONAL CAE CONFERENCE AND EXHIBITION | www.caeconference.com

2021, November 17 - 19 | Vicenza, Italy | Hybrid event

Optimisation Workflow: shape parameterisation

- WP inner and outer surfaces are considered for each pair baseline/isostress
- RBF Morph ACT Extension inside ANSYS Mechanical was used to perform shape parameterisation
- The displacement field shifting the first shape onto the second is applied to the whole TF structure (WP+casing+filler)

Optimisation Workflow: shape parameterisation

- A surface projection modifier was applied to each source-target pair
- The scaling of the defined displacement field determines the intermediate configurations inbetween the initial shape and the iso-stress one (0 = baseline, 1 = iso-stress with steps of 0.1)

Optimisation Workflow: shape parameterisation

- A surface projection modifier was applied to each source-target pair
- The scaling of the defined displacement field determines the intermediate configurations inbetween the initial shape and the iso-stress one (0 = baseline, 1 = iso-stress with steps of 0.1)

Surface geometries are loaded from external CAD

Dead-mesh of the baseline model

Surfaces turned into ANSYS parametric geometries (meshed)

RBFMorph modifies the model shape acting on nodal positions

Material assignment/orientation, EM analysis, structural analysis

- Optimisation is driven by DX, extracting stresses as output
- A DOE is calculated for each ADC configuration

Optimisation Workflow: results

- Stress parameter σ_V introduced to evaluate optimisation, measuring the percentage of volume exceeding the chosen limit of 450 MPa of VM stress on casing
- Blending parameter between 0 (baseline) and 1 (iso-stress) is increased at intervals of 0.1
- Optimal shape for each ADC run is chosen to be the first with $\sigma_V \leq 1\%$
- Baseline σ_V values: 12%, 18%, 8%, 12%

Automatic workflow: SN results

 Evolution of the SN from the baseline to the iso-stress configuration

Automatic workflow: SN results

Evolution of the SN from the baseline to the iso-stress configuration

Automatic workflow: SN results

- Candidate shape with blending parameter 0.6
- Comparison with baseline and bending-free

2021, November 17 - 19 | Vicenza, Italy | Hybrid event

Automatic workflow: DN results

Evolution of the DN from the baseline to the iso-stress configuration

Automatic workflow: DN results

Evolution of the DN from the baseline to the iso-stress configuration

Automatic workflow: DN results

- Candidate shape with blending parameter 0.7
- Comparison with baseline and bending-free

2021, November 17 - 19 | Vicenza, Italy | Hybrid event

Automatic workflow: SF results

Evolution of the SF from the baseline to the iso-stress configuration

Automatic workflow: SF results

Evolution of the SF from the baseline to the iso-stress configuration

Automatic workflow: SF results

- Candidate shape with blending parameter 0.5
- Comparison with baseline and bending-free

Automatic workflow: SX results

Evolution of the SX from the baseline to the iso-stress configuration

Automatic workflow: SX results

 Evolution of the SX from the baseline to the iso-stress configuration

Automatic workflow: SX results

- Candidate shape with blending parameter 0.5
- Comparison with baseline and bending-free

2021, November 17 - 19 | Vicenza, Italy | Hybrid event

Conclusions

- The SN candidate, computed on the simplified model, was explored on the full model, obtaining a satisfactory result
- The TF coils of the DEMO ADCs were originally designed to generate a magnetic field with specific characteristics, but not to withstand the Lorentz forces from EM interactions
- An optimization procedure based on ANSYS Workbench, RBF Morph and ANSYS APDL was built to find a compromise between their original shape and an iso-stress profile
- Proposed workflow was able to successfully find the minimum shape modification for each ADC in order to reduce the stress level to below 450 MPa

Come visit us at RBF Morph booth!

I have heard that with fusion we can have our own stars

Have a look at the 3D printed prototype showing the effect of shape optimization

Visit the RBF Morph booth in the CAE Conference & Exhibition 2021

