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Design by optimization

Optimization environment

Geometric

parameterization Numerical analysis
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Domain adaptation

 CAD driven
* Mesh morphing
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CAD to mesh

« Main advantages
o Accurate geometry quality control
* High constraints setup flexibility
 No “back to CAD” required

 Main disadvantage
« Complex and not generalizable setup
« Highly skilled CAD user required
 Robustness

« Remesh required
o Structured grids
« Simple geometries
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esh morphing
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RBF for mesh morphing

e Radial Basis Functions (RBF) can be used to
drive mesh morphing (smoothing) from a
list of source points and their
displacements.

o Surface shape changes (exact nodes control)
* Volume mesh smoothing.

 RBF are recognized to be one of the best
mathematical tool for mesh morphing.
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RBF mesh morphing

« Main advantages
 No re-meshing
« Can handle any kind of mesh
« Can be integrated in the CFD solver
e Highly parallelizable
 Robust process

 Main disadvantage
« Computationally expensive (HPC for large
grids)
 Back to CAD procedure required

« Uncertainness in setting up complex
constrained geometric problems
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Welcome to the World of Fast Morphing!




RBF Morph software line

« add-on for ANSYS Fluent CFD solver

« Stand alone (GUI+TUI)

e OpenFOAM, Nastran, elsA, CFD++, StarCCM+,
CGNS, NASTRAN

e ANSYS Mechanical ACT module

« HPC RBF general purposes library
e |t is the kernel of RBF Morph (parallel, GPU)
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How It works

$

* Setup e
* Select fixed and i
moving walls by source B e
points o R :
* Prescribe the

displacements (or a
combination of

e Fitting
e Solution and storing of
the RBF system
 Smoothing

« Application of the
computed morphing
actions on surfaces
and volume
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Solver performance samples

14 mill. cells, 60.000 points, PC 4 cpu 2.67 GHz
o fitting time: 53 sec. (serial)
e smoothing: 3.5 min.

50 mill. cells, 30.000 points, HPC 140 cpu
 fitting time: 25 sec. (serial)
e smoothing: 1.5 min.

100 mill. cells, 200.000 points, HPC 256 cpu
o fitting time: 25 min.
e smoothing: 5 min.

Largest fitted cloud 2 mill. points on 32 cpu in 3 hours.

Largest model morphed (in our knowledge) 700 mill.
cells on 768 cpu in 45 min.
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CAD input and output
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ODbjectives of this work

e Test the capabillity of mesh morphing
approach to manage complex
constrained shape parameterization

 Verify its efficiency when coupled with
leading technologies in an optimization
environment

 Develop a challenging test pilot problem
to demonstrate the capabillity of the
proposed approach
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Partners
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Welcome to the World of Fast Morphing!
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A-Class cat folls design

The fastest single handed racing boats

- '-". -_—vlh ______

33" CAE CONFERENCE
2017, 6 - 7 November




Geometric constraints

A-Class Rules

8.1 - No part of each hull or
hull appendages below the
waterline shall be less than

0.75 meters from the centre kj K/J

2.3m

line 15 m

8.2 - Movable and

retractable hull appendages 3

shall be inserted from the top \0

or be capable of being fully f

retractable into the hull.

=] e (tmoreny Jp ) oA conFEREce



Design conditions

Total displacement = 170 Kg
heeling angle =5 deg

 Upwind sailing
e “traditional” salling
e Boat speed = 10 knots
 fixed sinkage
» free leeway angle

 Downwind sailing
« “foiling” salling
e Boat speed = 15 knots
* leeway angle = 3 deg
» free sinkage

downwind

1%\
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Upwind equilibrium

* One hull floating (fixed attitude)
* Fixed heeling moment F,
* Variable leeway angle . P

Wy
F Fuv
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Upwind analysis

Updated domain
Run
Run=1 number Run=3
Run=2 i y
A
Leeway angle = linear
Leeway angle = 1 deg. ] L Leeway angle = 2 deg. ] [ extrapolat)ilon gf Run 1 and 2 J

-

> Single phase CFD analysis

_________________________________________________

arget side force
obtained within
tolerance?

[ foils drag upwind J
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Downwind equilibrium

* Flying hulls (foiling)
e Foils carries 70% of
displacement F,

» Leeway fixed to 3 deg
(simplification)
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Downwind analysis

Updated domain

Y

[ Starting sinkage = maximum draft ]

—>{ Update sinkage }—»l VOF CFD analysis

______________________________________________________________

Lift < target
&
max draft?

Target lift obtained
within tolerance?

No

Q [ foils drag downwind

2017, 6 - 7 November

0 == rd
ceEseso. . (dof-moeph) w EDN{]INI 33" CAE CONFERENCE



Computational
domain

e Structured hexa
e Inviscid hull
« Wall functions on foils (fully turbulent BL)
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Grid sensitivity analysis

e Llevel 1l =1 milions
e Level 2 = 7.5 millions
e Level 3 = 25 millions

| order of 5 %
142 1 (downwind analysis)

0 5 10 15 20 25 30
Mesh size [mill.]
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Front shape parameters

* Front shape variables of design
1. total foll draft
2. outer segment cant angle
3. Inner segment angle respect to vertical

e r | r r r

o Scheme script




Planform parameterization



Optimization workflow

Starting geometry
S —— ‘
{ Update domain ]—»‘ Downwind analysis |

________________________________________

Solution obtained?
No

Yes

A
New shape
parameters

A

I v v
At otieal Foll Avar Al ‘, Obj. Func. 1 Obj. Func. 2
IAnaIyUcthuIIdragmodeI foils drag upwind + hull drag J L foils drag downwind J

____________________________________________
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___________________________________________
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> Pareto solution
\




Analytical hull drag model|

Viscous drag Residuary drag
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Analytical models ] S ][ e
tuned against a ] B v o
database of CFD Z, PR Pases
solutions on the isolated  °%]  # i
demihull [1] o A
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[1] Ubaldo Cella, Francesco Salvadore, Raffaele Ponzini, “Coupled Sail and Appendage Design Method for Multihull Based on Numerical
Optimisation”, PRACE — EU SHAPE Project final report, 5t July 2016, available online at www.prace-ri.eu
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Pareto solution
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optimized

Total drag downwind [Kg]

14 15 16 17 18 19 20 21 22
Total drag upwind [Kg]|

2 objectives Total drag
optimization using GAs reduction:
Around 400 eval. Upwind = - 7 %.
Around 40% rejected Downwind =-7.9 %
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Post design verification

Mesh Baseline Optimized Drag reductlon
Kg Kg

Coarse (1 mill.) 14.7 13.54 7. 89

Fine (25 mill.) 13.99 12.92
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Conclusions

e Strongly constrained parameterization
problem successfully faced by RBF mesh
morphing.

A complex workflow of a test pilot problem
was setup and efficiently integrated in an
optimization environment.

* Improvement larger than 7% was obtained
starting from a geometry roughly
replicating existing designs.
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