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Introduction

 The aim of the present work is to consolidate a mesh morphing based

multi-physics workflow.
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 In a multi-physics environment a

specific grid has to be generated

for each kind of analysis and in for

each shape to be tested.

 Creating new grids for each of the

physics to be analyzed can consume

the 70% of the total analysis time.

 The proposed methodology will be

applied to a hemo-elastic study of

the Ascending Aorta Aneurysm.



www.caeconference.com

Introduction

 The Ascending Aorta Aneurysm is a severe threatening condition

because it is a silent disease and its rupture can lead to mortal

consequences.

 The only treatment option is surgery repair and the parameter for

surgical intervention is diameter of the aneurism.

 Research efforts aimed at correlating the risk of rupture to histo-

mechanical tissue properties and morphological characteristics.

 Hemodynamic features of the blood flux were investigated during the

growth process of ascending aneurism.
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Introduction

 To properly investigate through numerical models the growth of

aneurism, the shape of the aorta model has to be modified

according to the actual configuration of the real aorta.

 Following the classical approach the update of the model corresponds

to a re-generation of the computational grid (remeshing), whose

automation (if possible) can be complex, painful and time-

consuming.
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Introduction

 In the present work, the tool adopted for morphing the

FEM mesh is RBF Morph™, which is based on

Radial Basis Functions (RBF).

 The mesh morphing tool is used inside ANSYS®

Workbench™, thanks to the ANSYS® ACT™

customization framework.

 The shape modification can be used in multi-

physics application, such as one-way fluid-structure

interaction (FSI) analysis, performed with ANSYS®

Fluent™ and ANSYS® Mechanical™ solvers.
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Introduction

 The baseline geometry are

imported/generated in the CAD tool

ad meshed simultaneously.

 The shape modification are

applied to the baseline meshes

through the mesh morphing tool to

obtain the meshes of the modified

configurations.

 The morphed meshes are

translated to the solvers to

compute the multi-physics

parameters of interest.
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RBF Background

 RBFs are a mathematical tool capable to interpolate at a generic

point in the space a function known in a discrete set of points (source

points).

 The interpolating function is composed by a radial basis and by a

polynomial:
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RBF Background

 If evaluated on the source points, the interpolating function gives

exactly the input values:

 The RBF problem (evaluation of coefficients  and ) is associated to

the solution of the linear system, in which M is the interpolation matrix,

P is a constraint matrix and g is the vector of known values at source

points:
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RBF Background

 Once the RBF problem is solved, each displacement component is

interpolated:

 Several different radial functions (kernel) can be employed:
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Application Description

 The CAD description of the ascending aorta was obtained from a

database of healthy patients.

 The CAD geometries of the aneurysm were extracted from a database

of patients selected for surgical treatment

 The geometry extraction procedure is described in: “K. Capellini, E.

Costa, et al, ESB-ITA17 VII Annual Meeting, Rome, 2017”
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CAD of healthy 

ascending aorta

CAD of developed 

aneurysm on the 

ascending aorta
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Application Description

 From the provided geometries two different models were

realized:

 a FEM one, realized using 7,8 k nodes and 15,6 k quadratic

triangular shells

 a CFD one, realized using 3,7 M nodes and 2,4 M elements.

A hybrid mesh was realized for the CFD model, inflating 4

layers of pentahedral elements on the aorta walls and

adopting tetrahedral elements to discretize the internal

volume.

 Both models were in the same ANSYS® Mechanical™

cell, the FEM one was set up as ‘Solid’ whilst the CFD

one was set up as ‘Fluid’
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FEM model

CFD model
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Mesh Morphing Set-up
 Due to the large amount of nodes, only the region

interested by the shape variation was selected as
morphing domain (source points 3’222, target points 1,8
M).

 The ‘Surface Targeting’ shape modification was used in
order to project mesh nodes from the baseline position
onto the surfaces representing the identified phases of
aneurysm growth.
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Region interested by the 

morphing action
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Mesh Morphing Set-up

 Both FEM and CFD meshes were successfully morphed through the

sequential growth phases of the aneurysm.

 The morphed meshes were successfully imported into the numerical

solvers to be analyzed.

 The final workflow is: the meshes are firstly morphed, then the CFD

solution is computed, the pressure results are then mapped onto the

structural mesh and finally the FEM solution is evaluated.
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Sequential steps to obtain the morphed configuration Workbench Workflow



www.caeconference.com

Mesh Morphing Effects

 Mesh morphing moves mesh nodes, element quality decreases. In the

present application, the final mesh skewness is above 0.85 only for 64

cells of the CFD mesh.
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CFD Results
 CFD models were analyzed in steady

condition using ANSYS® Fluent™

 Boundary condition were set at the
selected surfaces as ‘velocity inlet’
and ‘pressure outlet’

 the pressure and velocity values were
assumed equal to 60% of the systolic
peak of the selected cycle.

 CFD set-up:

 Blood flow incompressible and 
Newtonian,

 density 1.06 x 103 kg/m3

 dynamic viscosity 3.5 x 10-3 Pa*s

 laminar flow
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inlet velocity profile

outlet pressure profile

0,669 m/s

9506 Pa

9506 Pa
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CFD Results

 Results are presented in terms of

blood velocity inside the simulation

volume and shear stress on the

aorta walls
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FEM Results

 The FEM models were loaded with the pressure obtained from CFD

analyses. The pressure values were interpolated by ANSYS®

Workbench™ routines.

 Constraints were applied taking into account the ability of the blood vessels

to dilate themselves adopting local cylindrical coordinate systems.

 The material model used in FEM analyses is a Mooney-Rivlin 2 parameter

hyperelastic material.
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Mapped Pressure Local Cylindrical Coordinate Systems
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FEM Results
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Conclusions

 The presented study focuses on a methodology to perform multi-

physics analyses varying the model shape only one time.

 The procedure has been put in place exploiting the mesh morphing

RBF Morph™ ACT™ extension for ANSYS® Workbench™ and tested

on a one-way FSI application.

 The starting geometries were obtained from two different databases:

the first representing a population of healthy patients and the second

composed by patients selected for surgical intervention.

 In the Workbench environment, numerical models were generated for

each physics to be analyzed (i.e. fluid-dynamics and structural

mechanics).
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Conclusions

 Exploiting the RBF Morph ACT extension, a single set-up for the

shape modification was build and then the shape modification was

applied to all the generated numerical models.

 The mesh quality of the morphed configuration resulted to be

acceptable to successfully complete the numerical calculations.

 The procedure allowed to perform a multi-physics analysis at different

geometrical configurations without remeshing the modified geometry,

allowing a considerable time saving with respect to the whole analysis

required time.
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Further Improvements

 Constraint system can be improved to take into account the effects of

blood vessels, tissues and muscles around the modeled part of the

ascending aorta.

 Material used to modeling the aorta tissue can be improved taking into

account patient specific mechanical characteristics and increasing

material stiffness due to the aneurysm growth.

 Numerical simulations (CFD and FEM) will be performed taking into

account the whole blood pressure and velocity cycle (transient

analyses).
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Other RBF Morph applications
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CAE Conference 2017 – Transportation session (Tue 7/11 9:30 

– 16:00):

 U. Cella, M.E. Biancolini, A. Clarich, F. Franchini, «Constrained

Geometric Parametrization by Mesh Morphing for a Catamaran 

Foils Optimization Procedure»

 M.Bonvecchio, M.E. Biancolini, U. Cella, M. Ponzi, «Shape

Optimization of a 3d Printed High Performances Automotive Parts»
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