

Automatic Optimization Method Based on Mesh Morphing Surface Sculpting Driven by Biological Growth Method: an Application to Coiled Spring Section Shape

Stefano Porziani – porziani@ing.uniroma2.it Francesco De Crescenzo Emanuele Lombardi Christian Iandiorio Pietro Salvini Marco E. Biancolini

Università degli Studi di Roma «Tor Vergata», Rome 0133, Italy

Outline

Introduction

- Radial Basis Functions Mesh Morphing
- Biological Growth Method (BGM) Background
- Parameter-less Optimization
- Coiled Springs Background
- Coiled Spring Section Application
- Conclusions

Introduction and motivation

- Nowadays each design process requires Optimization, thus optimization techniques are gaining a high importance in design and manufacturing of new products
- In the product design, numerical simulations, as Finite Element Method (FEM), are employed to virtually test different configurations
- Nevertheless, research of an **optimal configuration** can be time-consuming and techniques to automate both model generation and configuration optimization are requested
- Mesh morphing is an innovative technique that allow to reduce time needed to obtain a new configuration of a numerical model by applying shape modification directly to the computational grid

Introduction and motivation

TOR VERGATA

- **BGM is inspired** by the way in which **natural tissues** react to a surface load, let the tissues to growth in order to reduce surface stresses
- BGM and Mesh Morphing can be **successfully coupled** to obtain a surface sculpting methodology which is effective in mechanical component optimization
- Methodology has been developed and is presented in the framework of ANSYS
 Mechanical Finite Element Analysis (FEA) tool using the RBF Morph ACT extension as mesh morpher

- Radial Basis Functions (RBF) are a mathematical tool capable to interpolate in a generic point of the space a function known in a discrete set of points (source points)
- The interpolating function is composed by a radial basis and by a polynomial:

distance from the i-th source point

- Radial Basis Functions (RBF) are a mathematical tool capable to interpolate in a generic point of the space a function known in a discrete set of points (source points)
- The interpolating function is composed by a **radial basis** and by a **polynomial**:

ICCS 2021 – International Conference on Computational Science – 16-18 June, 2021

- If evaluated on the **source points**, the interpolating function gives exactly the input values $s(x_{k_i}) = g_i$ $h(x_{k_i}) = 0$ $1 \le i \le N$
- The RBF problem (evaluation of coefficients γ and β) is associated to the solution of the linear system, in which M is the interpolation matrix, P is a constraint matrix, g is the vector of known values on the source points

$$\begin{bmatrix} \mathbf{M} & \mathbf{P} \\ \mathbf{P}^{\mathrm{T}} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{\gamma} \\ \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} \boldsymbol{g} \\ \mathbf{0} \end{pmatrix} \quad M_{ij} = \varphi \begin{pmatrix} \boldsymbol{x}_{k_i} - \boldsymbol{x}_{k_j} \end{pmatrix} \quad 1 \le i, j \le N \quad \mathbf{P} = \begin{bmatrix} 1 & x_{k_1} & y_{k_1} & z_{k_1} \\ 1 & x_{k_2} & y_{k_2} & z_{k_2} \\ \vdots & \vdots & \vdots \\ 1 & x_{k_N} & y_{k_N} & z_{k_N} \end{bmatrix}$$

- Once solved the RBF problem each displacement component is interpolated to obtain the displacement field
- Several different **radial functions** (kernel) can be employed

$$\begin{aligned} s_x(\mathbf{x}) &= \sum_{i=1}^N \gamma_i^x \varphi(\mathbf{x} - \mathbf{x}_{k_i}) + \beta_1^x + \beta_2^x x + \beta_3^x y + \beta_4^x z \\ s_y(\mathbf{x}) &= \sum_{i=1}^N \gamma_i^y \varphi(\mathbf{x} - \mathbf{x}_{k_i}) + \beta_1^y + \beta_2^y x + \beta_3^y y + \beta_4^y z \\ s_z(\mathbf{x}) &= \sum_{i=1}^N \gamma_i^z \varphi(\mathbf{x} - \mathbf{x}_{k_i}) + \beta_1^z + \beta_2^z x + \beta_3^z y + \beta_4^z z \end{aligned}$$

TOR VERGA

UNIVERSITÀ D

RBF	φ(r)	RBF	φ(r)
Spline type (Rn)	r ⁿ , n odd	Inverse multiquadratic (IMQ)	$\frac{1}{\sqrt{1+r^2}}$
Thin plate spline	r ⁿ log(r) n even	Inverse quadratic (IQ)	$\frac{1}{1+r^2}$
Multiquadratic (MQ)	$\sqrt{1+r^2}$	Gaussian (GS)	e^{-r^2}

ICCS 2021 – International Conference on Computational

Science - 16-18 June, 2021

- BGM approach is based on the observation that **biological** structures growth is driven by local level of stress.
- Bones and trees' trunks are able to adapt the shape to mitigate the stress level due to external loads.
- The process is driven by stress value at surfaces. Material can be added or **removed** according to local values.
- Was proposed by Mattheck & Burkhardt in 1990*

*Mattheck C., Burkhardt S., 1990. A new method of structural shape optimization based on biological growth. Int. J. Fatigue 12(3):185-190.

TOR VERGATA

BGM Background

• The BGM idea is that surface growth can be expressed as a **linear law** with respect to a given threshold value

$$\dot{\boldsymbol{\varepsilon}} = k \left(\sigma_{Mises} - \sigma_{ref} \right)$$

• In this study we extend the concept and different **stress types** can be used to modify the surface shape

$$S_{node} = \frac{\sigma_{node} - \sigma_{th}}{\sigma_{max} - \sigma_{min}} \cdot d$$

Stress/strain type	Stress/strain type
von Mises stress	Stress intensity
Maximum principal stress	Maximum Shear stress
Minimum principal stress	Eqv. plastic strain

Parameter-less Optimization

- Helical springs are key components for many mechanical systems and have been deeply studied
- Stress distribution is not uniform: optimization of the wire is focused on cross-section shape
- In this study the BGM driven optimization has been performed considering **two constraints** separately:
 - Cross-section outer radius fixed and inner surface sculpted
 - Cross-section inner radius fixed and **outer surface sculpted**
- Optimized geometries have been compared with
 - Equivalent circular cross-section with **same stiffness** and outer/inner **radius**
 - Equivalent circular cross-section with **same stiffness** and swept **volume**

Coiled Spring Background

- Since the analyzed coil **spring** is **flat** and with a spring index > 6, basic spring design formulas can be applied
- Stiffness

$$K = \frac{Gd^4}{8D^3}$$

• Maximum tangential stress (inner radius)

$$\tau_{in} = \frac{8PD}{\pi d^3} \left(\frac{4c - 1}{4c - 4} + \frac{0.615}{c} \right)$$

• Minimum tangential stress (outer radius)

$$\tau_{out} = \frac{8PD}{\pi d^3} \left(\frac{4c+1}{4c+4} - \frac{0.615}{c} \right)$$

- In order to meet the **constraints** on outer diameter, inner diameter and volume, the following equation can be applied
- Same outer diameter and stiffness

$$D + d = D_e \qquad \frac{Gd^4}{8D^3} = K \longrightarrow Gd^4 - 8(D_e - d)^3 K^* = 0$$

• Same inner diameter and stiffnes

$$D - d = D_i$$
 $\frac{Gd^4}{8D^3} = K \longrightarrow Gd^4 - 8(D_i + d)^3 K^* = 0$

• Same volume and stiffness

$$D = \left(\frac{2GV^2}{\pi^4 K}\right)^{\frac{1}{5}} \qquad \qquad d = \sqrt{\frac{4V}{\pi^2 D}}$$

• Numerical model represented **half coiled spring**, shaped in order to mitigate stress concentration due to load and constraint application

• 74200 parabolic elements were used to discretize the geometry, resulting in 306'000 nodes

- Geometry was **segmented** in order to ease the surface selection for BGM stress evaluation and morphing action application
- BGM **parameters** d and σ_{th} were set equal to 1.2% of wire diameter and 80% of the maximum Equivalent von Mises Stress acting on the coil surface in the baseline configuration
- Optimization was stopped after 20 BGM iterations

- For comparison purposes, a parameterbased optimization was also performed, modifying the inner coil surface using two parameters
- Nodes on the inner points and at 45 degrees were moved along surface normal in the range [0; 0.2] mm
- ANSYS Design Explorer Response Surface minimization was used, generating a Latin Hypercube Sampling Design DoE on which a Kriging response surface with variable kernel was computed

Inner surface sculpting

- Inner surface is moved outward adding material
- Compared to equivalent circular cross section, maximum stress is lowered by **3.73%, increasing volume** by **0.6%**
- **Efficiency** (ration between elastic energy stored in the section and energy that can be stored with all section points at maximum stress) is higher than the equivalent circular section (41% vs 38%)
- In the same volume spring maximum stress is 4% higher than in the BGM optimized one

TOR VERGA

Inner surface sculpting

	d _r [mm]	d _z [mm]	D [mm]	τ _{in} /Ρ [Mpa/N]	τ _{out} /Ρ [Mpa/N]	Eps [_]	A [mm²]	V [mm³]
	[]	[]	[]	[[[]]]	[[[]]]	LJ	[]	[]
Optimized	4.26	3.85	39.74	1.635	1.273	41%	13.13	1643
Equivalent	4.10	4.10	39.90	1.696	1.280	38%	13.19	1653
Same volume	4.09	4.09	39.80	1.702	1.515	38%	13.14	1643

- Outer surface sculpting
 - Outer surface is moved inward removing material
 - Compared to equivalent circular cross section, maximum stress is lowered by 3%, increasing volume by **2.3%**
 - Efficiency is not improved with respect to the equivalent circular section
 - In the **same volume** spring maximum stress is 0.5% lower than in the BGM optimized one

TOR VERGA

Outer surface sculpting

	d _r [mm]	d _z [mm]	D [mm]	τ _{in} /Ρ [Mpa/N]	τ _{out} /Ρ [Mpa/N]	Eps [-]	A [mm²]	V [mm³]
Optimized	3.76	4.02	39.76	1.996	1.598	38%	11.78	1476
Equivalent	3.83	3.83	39.83	2.055	1.579	38%	11.53	1443
Same volume	3.88	3.88	39.81	1.986	1.777	38%	11.80	1476

- Optimization method comparison
 - With parameter-based optimization crosssection area is 1.75% higher
 - A higher stiffness is obtained (+3.76%)
 - Efficiency is 38% (as in equivalent section configurations)
 - Stress distribution is less homogeneous on surfaces

- A new parameter-less approach for shape optimization has been presented
- **BGM** and **Mesh Morphing** are combined into an innovative surface sculpting tool, capable to take advantage of **surface stress** levels
- RBF based Mesh Morphing is used to modify shapes according to BGM data
- Proposed approach has been applied to a widely investigated mechanical component: springs
- The sculpting action was applied to inner surface (where maximum surface stress acts) and to outer surface (where minimum surface stress acts)

- BGM sculpting allowed to obtain a cross-section capable to guarantee **higher efficiency** (41%) and **lower maximum** stress (-3.73%) **slightly increasing volume** (+0.6%) when applied to **inner** coil **surface**
- Application to **outer surfaces** did not gave better result if compared to equivalent cross section performances
- A parameter-based optimization was compared to the results from parameter-less one: whilst results are comparable, spring efficiency was higher with BGM sculpting optimization
- On the other hand, a parameter-based optimization requires more user efforts to complete, whilst BGM optimization can be run automatically

Thank You For Your Kind Attention!

ICCS 2021 – International Conference on Computational Science – 16-18 June, 2021

Automatic Optimization Method Based on Mesh Morphing Surface Sculpting Driven by Biological Growth Method: an Application to Coiled Spring Section Shape

Stefano Porziani – porziani@ing.uniroma2.it Francesco De Crescenzo Emanuele Lombardi Christian Iandiorio Pietro Salvini Marco E. Biancolini

Università degli Studi di Roma «Tor Vergata», Rome 0133, Italy