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Abstract This paper presents the application of the continuous adjoint method, pro-
grammed in OpenFOAM c©, combined with an RBF-based morpher to the aerody-
namic optimization of a generic car model. The continuous adjoint method produces
accurate sensitivities by utilizing the full differentiation of the Spalart–Allmaras tur-
bulence model, based on wall functions, while the RBF-based morpher provides a
fast and versatile way to deform both the surface of the car and the interior mesh
nodes. The integrated software is used to minimize the drag force exerted on the
surface of the DrivAer car model.

1 Introduction

During the last years, CFD-based aerodynamic shape optimization has been attract-
ing the interest of both academia and industry. The constituents needed for executing
an automated shape optimization loop include the flow solver, the geometry param-
eterization (the parameters of which act as the design variables), an optimization
method capable of computing the optimal values of the design variables and a way
to adapt (or regenerate) the computational mesh to each candidate solution.

Nowadays, a great variety of in-house and commercial flow solvers exist and are
in widespread use. In the study presented in this paper, the steady-state flow solver

E.M. Papoutsis-Kiachagias, K.C. Giannakoglou
National Technical University of Athens, Parallel CFD & Optimization Unit, Greece, e-mail:
vaggelisp@gmail.com, kgianna@central.ntua.gr

S. Porziani, E. Costa
D’Appolonia S.p.A., Viale Cesare Pavese, 305 - 00144 Rome, Italy, e-mail: ste-
fano.porziani@dappolonia.it, emiliano.costa@dappolonia.it

C. Groth, M.E. Biancolini
University of Rome Tor Vergata (UTV), Italy, e-mail: corrado.groth@uniroma2.it, biancol-
ini@ing.uniroma2.it

1



2 E.M. Papoutsis-Kiachagias et al

of the open-source CFD toolbox, OpenFOAM c©, is used to numerically solve the
Navier-Stokes equations for incompressible, turbulent flows.

Shape parameterization techniques can be divided into two categories, i.e. those
parameterizing only the surface to be optimized and those which also deform the
surrounding nodes of the interior mesh. The former include the normal displace-
ment of surface wall nodes [14], the control points of Bézier–Bernstein or NURBS
curves or surfaces and CAD parameters [15, 17]. The latter include volumetric B-
splines or NURBS [10], Radial Basis Functions (RBFs) [6, 2], the harmonic coordi-
nates method [7], etc. The great advantage of the this category is that the interior of
the computational mesh is also deformed, avoiding, thus, costly re-meshing and al-
lowing the initialization of the flow field from the solution obtained in the previous
optimization cycle, since the mesh topology is preserved. In this paper, a number
of parameters controlling the positions of groups of RBF control points are used as
the design variables, using technology and methods developed in the context of the
RBF Morph software [3].

Optimization methods can be separated into two main categories, i.e. stochastic
and gradient-based ones. Stochastic optimization methods, with Evolutionary Al-
gorithms (EAs) as their main representative, are extremely versatile and have the
ability to compute global optima but suffer from a computational cost that scales
with the number of design variables, making their use impractical for large scale
optimization problems. On the other hand, gradient-based optimization methods re-
quire a higher effort to develop and maintain but can have a cost per optimization
cycle that does not scale with the number of design variables, when the adjoint
method is used to compute the gradients of the objective function. Both discrete
and continuous adjoint methods, [4, 12], have been developed. In this work, a con-
tinuous adjoint method that takes into consideration the differentiation of the tur-
bulence model PDE is used to increase the accuracy of the computed sensitivities
of the drag force objective function w.r.t. the shape modification parameters [13].
The continuous adjoint solver has been implemented on an in-house version of the
OpenFOAM c©software.

The above-mentioned tools are combined in order to form an automated op-
timization loop, targeting the minimization of the drag force exerted on the sur-
face of a generic car model. In specific, a configuration of the DrivAer car model,
[5], developed by the Institute of Aerodynamics and Fluid Mechanics of TU Mu-
nich, is studied. The constituents of the optimization loop were combined under the
RBF4AERO project. Funded in the Aeronautics and Air Transport (AAT) research
thematic area of the EU Seventh Framework Programme, the RBF4AERO Project
aims at developing the RBF4AERO Benchmark Technology, namely a numerical
platform conceived to face the requirements of top-level aeronautical design studies
such as multi-physics and multi-objective optimization, fluid-structure interaction
(FSI), adjoint-driven optimization and ice accretion simulation. Based on the RBF
mesh morphing technique, such a numerical platform allows to significantly boost
the aerodynamic design process and a relevant impact is then expected in the ever-
growing technological demand posed by aeronautical manufacturers in relation to
the performance and reliability of aircrafts constituting components. To demonstrate
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the general validity and the effective usage of the RBF4AERO platform in the in-
dustrial field, one of its capabilities envisaging the adjoint-morphing coupling is,
herein, described for a car aerodynamics optimization problem.

2 The Continuous Adjoint Method

In this section, the formulation of the continuous adjoint PDEs, their boundary con-
ditions and the sensitivity derivatives (gradient) expression are presented in brief.
The development is based on the incompressible Navier-Stokes equations.

2.1 Flow Equations

The mean flow equations together with the Spalart–Allmaras turbulence model
PDE, [16], comprise the flow or primal system of equations that reads

Rp=−∂vi

∂xi
=0 (1a)
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i =v j
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+

∂ p
∂xi

−
∂τi j

∂x j
=0 (1b)
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(1c)

where vi are the components of the velocity vector, p is the static pressure divided
by the constant density, τi j =(ν +νt)

(
∂vi
∂x j

+
∂v j
∂xi

)
are the components of the stress

tensor, ν and νt the kinematic and turbulent viscosity, respectively, ν̃ the Spalart–
Allmaras model variable and ∆ the distance from the wall boundaries. Details about
the turbulence model constants, source terms and boundary conditions can be found
in [16].

2.2 General Objective Function

Let F be the objective function to be minimized by computing the optimal values
of the design variables bn,n ∈ [1,N]. A general expression for an objective function
defined on (parts of) the boundary S of the computational domain Ω is given by

F =
∫

S
FSi nidS (2)
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where n is the outward facing normal unit vector.
Differentiating eq. 2 w.r.t. to bn and applying the chain rule yields
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where δΦ/δbn is the total derivative of any quantity Φ while ∂Φ/∂bn is its partial
derivative. These are related by

δΦ
δbn

=
∂Φ
∂bn

+
∂Φ
∂xk

δxk

δbn
(4)

Computing the variation of the flow variables on the r.h.s. of eq. 3, either through Di-
rect Differentiation (DD) or Finite Differences (FD) would require at least N equiv-
alent flow solutions. To avoid this computational cost that scales with N, the adjoint
method is used, as presented in the next subsection.

2.3 Continuous Adjoint Formulation

Starting point of the continuous adjoint formulation is the introduction of the aug-
mented objective function

Faug=F+
∫

Ω
uiRv

i dΩ+
∫

Ω
qRpdΩ+

∫
Ω

ν̃aRν̃ dΩ (5)

where ui are the components of the adjoint velocity vector, q is the adjoint pressure
and ν̃a is the adjoint turbulence model variable, respectively. Dropping the last inte-
gral on the r.h.s. of eq. 5 would result to the so-called “frozen turbulence” assump-
tion which neglects the differentiation of the turbulence model PDE. This assump-
tion leads to reduced gradient accuracy, possibly even to wrong sensitivity signs,
[19]. To avoid making the “frozen turbulence” assumption, the Spalart–Allmaras
model PDE has been differentiated, see [19]. A review on continuous adjoint meth-
ods for turbulent flows can be found in [13].

The differentiation of eq. 5, based on the Leibniz theorem, yields
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Then, the derivatives of the flow residuals in the volume integrals on the r.h.s. of
eq. 6 are developed by differentiating eqs. 1 and applying the Green-Gauss theorem,
where necessary. This development can be found in [19] and [13].

In order to obtain a gradient expression which does not depend on the partial
derivatives of the flow variables w.r.t. bn, their multipliers in (the developed form
of) eq. 6 are set to zero, giving rise to the field adjoint equations
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=0 (7a)
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Rν̃a =−
∂ (v jν̃a)

∂x j
− ∂

∂x j

[(
ν+

ν̃
σ

)
∂ ν̃a

∂x j

]
+

1
σ

∂ ν̃a

∂x j

∂ ν̃
∂x j

+2
cb2

σ
∂

∂x j

(
ν̃a

∂ ν̃
∂x j

)
+ν̃aν̃Cν̃

+
∂νt

∂ ν̃
∂ui

∂x j

(
∂vi

∂x j
+

∂v j

∂xi

)
+(−P+D) ν̃a=0 (7c)

where τa
i j = (ν + νt)

(
∂ui
∂x j

+
∂u j
∂xi

)
are the components of the adjoint stress tensor.

Eq. 7c is the adjoint turbulence model equation, from which the adjoint turbulence
model variable ν̃a is computed.

The adjoint boundary conditions are derived by treating the flow variations in the
boundary integrals (of the developed form of) eq. 6. This development is presented
in detail in [19, 13].

In industrial applications, the wall function technique is used routinely in analysis
and design. When the design is based on the adjoint method, considering the adjoint
to the wall function model becomes necessary. The continuous adjoint method in
optimization problems, governed by the RANS turbulence models with wall func-
tions, was initially presented in [20], where the adjoint wall function technique was
introduced for the k − ε model and a vertex–centered finite volume method with
slip velocity at the wall. The proposed formulation led to a new concept: the “ad-
joint law of the wall”. This bridges the gap between the solid wall and the first node
off the wall during the solution of the adjoint equations. The adjoint wall function
technique has also been implemented for flow solvers based on cell-centered finite-
volume schemes, for the Spalart–Allmaras , [13], and k−ω SST , [8], turbulence
models.

After satisfying the adjoint PDEs and their boundary conditions, the remaining
terms in eq. 6 yield the sensitivity derivatives
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Functions T S1 to T S4 can be found in [13] while term TWF
SD results from the differ-

entiation of the law of the wall.
The deformation velocities, δxk/δbn, included in eq. 8 express the dependency

of the boundary wall nodes on the shape modification parameters. This can be com-
puted by differentiating the surface parameterization scheme presented in the next
section.

3 RBF-based Morphing

In this section the mesh morphing algorithm based on RBFs is described. The back-
ground theory of RBFs is first introduced providing details of its application in mesh
morphing field; the industrial implementation of the method as provided by the stand
alone version of the software RBF Morph is then described; finally the coupling of
the mesh morphing tool and the adjoint sensitivity is explained.

3.1 RBFs Background

RBFs are powerful mathematical functions able to interpolate data defined at dis-
crete points only (source points) in a n-dimensional environment. The interpolation
quality and its behavior depends on the chosen radial basis function.
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In general, the solution of the RBF mathematical problem consists on the calcu-
lation of the scalar parameters (sought coefficients) of a linear system of order equal
to the number of considered source points. The RBF system solution, determined
after defining a set of source points with their displacement, is employed to operate
mesh morphing to the discretized domain of the computational model. Operatively,
once the RBF system coefficients have been calculated, the displacement of an ar-
bitrary node of the mesh, either inside (interpolation) or outside (extrapolation) the
domain, can be expressed as the sum of the radial contribution of each source point
(if the point falls inside the influence domain). In such a way, a desired modifica-
tion of the mesh nodes position (smoothing) can be rapidly applied preserving mesh
topology.

RBFs can be classified on the basis of the type of support (global or compact)
they have, meaning the domain where the chosen RBF is non zero-valued.

Typical RBFs with global and compact support are shown in Table 1. RBFs are
scalar functions with the scalar variable r, which is the Euclidean norm of the dis-
tance between two points defined in a generic n-dimensional space.

Radial Basis Functions(RBF)
ϕ(r),r = ‖r‖

with global support

Spline type (Rn) rn,nodd

Radial Basis Functions(RBF)
ϕ(r) = f (ξ ),ξ ≤ 1,ξ = r

Rsup
with compact support

Wendland C0 (C0) (1−ξ )2

Wendland C2 (C2) (1−ξ )4(4ξ +1)

Wendland C4 (C4) (1−ξ )6
( 35

3 ·ξ 2 +6ξ +1
)

Table 1 Typical RBF functions.

An interpolation function composed of a radial basis ϕ and a polynomial h of or-
der m−1, where m is said to be the order of ϕ , introduced with the aim to guarantee
the compatibility for rigid motions, is defined as follows if N is the total number of
contributing source points

s(x) =
N

∑
i=1

γiϕ
(∥∥x− xki

∥∥)+h(x) (9)

The degree of the polynomial has to be chosen depending on the kind of RBF
adopted. A radial basis fit exists if the coefficients γi and the weights of the polyno-
mial can be found such that the desired function values are obtained at source points
and the polynomial terms gives no contributions at source points, that is
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s(xki) = gi,1 ≤ i ≤ N (10)

N

∑
i=1

γiq(xki) = 0 (11)

for all polynomials q with a degree less or equal to that of polynomial h. The mini-
mal degree of polynomial h depends on the choice of the RBF. A unique interpolant
exists if the basis function is a conditionally positive definite function [11]. If the
RBFs are conditionally positive definite of order m ≤ 2 [1], a linear polynomial can
be used

h(x) = β1 +β2x+β3y+β4z (12)

The subsequent exposition will assume that the aforementioned hypothesis is valid.
The values for the coefficients γi of RBF and the coefficients β of the linear polyno-
mial can be obtained by solving the system(

M P
PT 0

)(
γ
β

)
=

(
g
0

)
(13)

where g are the known values at the source points and M is the interpolation matrix
defined calculating all the radial interactions between source points

Mi j = ϕ
(∥∥∥xki − xk j

∥∥∥) ,1 ≤ i ≤ N,1 ≤ j ≤ N (14)

P is a constraint matrix that arises to balance the polynomial contribution and con-
tains a column of ”1” and the x y z positions of source points in the other three
columns

P =


1 xk1 yk1 zk1
1 xk2 yk2 zk2
...

...
...

...
1 xkN ykN zkN

 (15)

RBF interpolation works for scalar fields. For the smoothing problem, each com-
ponent of the displacement field prescribed at the source points is interpolated as
follows 

sx(x) =
N
∑

i=1
γx

i ϕ
(∥∥x− xki

∥∥)+β x
1 +β x

2 x+β x
3 y+β x

4 z

sy(x) =
N
∑

i=1
γy

i ϕ
(∥∥x− xki

∥∥)+β y
1 +β y

2 x+β y
3 y+β y

4 z

sz(x) =
N
∑

i=1
γz

i ϕ
(∥∥x− xki

∥∥)+β z
1 +β z

2x+β z
3y+β z

4z


(16)

The RBF method has several advantages that make it very attractive for mesh
smoothing. The key point is that being a meshless method only grid points are
moved regardless of which elements are connected to them and it is suitable for
parallel implementation. In fact, once the solution is known and shared in the mem-
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ory of each calculation node of the cluster, each partition has the ability to smooth its
nodes without taking care of what happens outside because the smoother is a global
point function and the continuity at interfaces is implicitly guaranteed. Furthermore,
despite its meshless nature, the method is able to exactly prescribe known deforma-
tions onto the surface mesh: this effect is achieved by using all the mesh nodes as
RBF centres with prescribed displacements, including the simple zero field to guar-
antee that a surface is left untouched by the morphing action.

3.2 RBF Morph Tool

The industrial implementation of the RBF mesh morphing poses two challenges: the
numerical complexity related to the solution of the RBF problem for a large number
of centers and the definition of suitable paradigms to effectively control shapes using
RBF. The software RBF Morph allows to deal with both as it comes with a fast RBF
solver capable to fit large dataset (hundreds of thousands of RBF points can be fitted
in a few minutes) and with a suite of modeling tools that allows the user to set-up
each shape modification in an expressive an flexible way. A detailed description
of the usage of RBF Morph for the external aero optimization of the Volvo XC60
is given in [9] where the 50:50:50 approach demonstrates how 50 different shape
variations can be explored using an high fidelity 50 millions cells mesh in less than
50 wall clock hours.

RBF Morph allows to extract and control points from surfaces and edges, to put
points on primitive shapes (boxes, spheres and cylinders) or to specify them directly
by individual coordinates and displacements. Primitive shapes can be combined in
a Boolean fashion and allow to limit the action of the morpher itself. Two shape
modifications used in this study are represented in fig. 1. It is worth noticing that the
shape information coming from an individual RBF set-up are generated interactively
with the help of the GUI and are used subsequently in batch commands that allows
to combine many shape modifications in a non linear fashion (non linearity occurs
when rotation axis are present in the RBF set-up).

3.3 Coupling of RBF mesh morphing with adjoint sensitivities

Once the adjoint sensitivities are available as surface mesh information it is possible
to easily compute the sensitivities w.r.t. shape parameters exploiting the parametric
mesh available using the mesh morphing tool. In order to take into account the non
linear fashion of the morphing field the mesh deformation velocities are generated
by numerical differentiation of the morphing field around the current design point in
the parametric space. For a given set of shape parameters the morpher is capable to
update the baseline mesh into the current one. A perturbed mesh, w.r.t. the current
one, can then be obtained for each shape parameter, computing the mesh result-
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(a) rear window (b) boat tail

Fig. 1 Example of RBF points arrangement for the definition of two shape parameters. The rear
window angle is controlled imposing a rigid rotation to the nodes on the window whilst preserving
the shape of the roof and gently deforming the tail. The morphing volume is limited by a Box
Encapsulation. Boat tail angle is changed applying a rotation around a proper axis of part of the
rear car whilst preserving the shape of the wheel; also in this case the morphing action is limited
by a box.

ing from its perturbation (keeping all the other constant). The sensitivity w.r.t. each
given parameter is then obtained multiplying the surface perturbation field by the
surface sensitivities. It is worth noticing that the aforementioned coupling works
not just at the origin of the parametric space (baseline model) but at any given de-
sign point; adjoint data need to be recomputed for each explored design point for
which local sensitivities are required. The coupling can be used to enrich DOE based
exploration for the parametric shape; in the industrial application presented herein,
the parameters sensitivities are used in a local optimization method based on the
gradient.

4 Optimization Algorithm

The gradient-based algorithm used to minimize the drag force is described in brief
below:

1. Define the shape modification parameters, section 3.
2. Solve the flow equations, eqs. 1.
3. Compute the drag force value, FD =

∫
SW

(
−τi j + pδ j

i

)
n jridS,r = [1,0,0]T .

4. Solve the adjoint equations, eqs. 7.
5. Compute the deformation velocities and through them, the sensitivity derivatives,

eq. 8.
6. Update the design variables by ∆bi =−ηδF/δbi, where η is a user-defined step.
7. Morph the car surface and displace the interior mesh nodes.
8. Unless the stopping criterion is satisfied, go to step 2.
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5 Applications

In this section, the optimization algorithm presented in in section 4, in the form of
an automated software, is used to minimize the drag force exerted on the surface
of the DrivAer car model. In specific, the fast-back configuration with a smooth
underbody, with mirrors and wheels (F S wm ww) is used as a test case.

Six shape deformation variables (design variables) are defined in total. The part
of the car surface parameterized by each of them and the corresponding deformation
velocities are depicted in fig. 2.

The minimization of the drag force is targeted by simultaneously varying all
shape deformation parameters. A computational grid of approximately 3.8 million
cells is used and turbulence is modeled by means of the Spalart–Allmaras model
with wall functions. Even though the flow around a car varies in time, the steady
state primal and adjoint PDEs are solved, to avoid the practical difficulties faced
when solving the unsteady adjoint equations in medium and large scale computa-
tional grids [18], by proceeding backwards in time. Hence, the objective function
cannot reach a constant value within each optimization cycle but oscillates around a
“mean” value. The evolution of the objective function value during the flow solver
iterations over the optimization cycles is shown in fig. 3.

The cumulative deformation magnitude after 15 optimization cycles, which led
to a reduction by more than 7% in the mean drag value, is shown in fig. 4. The
pressure field plotted over the initial and optimized geometries is depicted in fig. 5.

As expected, the area with the highest deformation is located, in the rear part
of the car. In specific, two major trends are present. The first one is to lower the
height of the rear window and to form a sort of a spoiler at the end of the trunk.
This creates an area of increased pressure at the bottom of the rear window and
despite the increased pressure on top of the formed spoiler, a resultant force that
pushes the car forward is generated, fig. 6. The second trend is to create a “boat tail”
effect (see fig. 4(c)) which leads to an increased pressure in the back side of the car,
contributing thus to drag reduction.

6 Conclusions

In this paper, the continuous adjoint method and an RBF-based morpher, combined
into an automated optimization software in the context of a research project funded
by the EU, were used as the constituents of a gradient-based optimization algorithm,
targeting the drag minimization of the DrivAer generic car model. A significant
reduction in the drag value was observed after 15 optimization cycles which required
approximately 16 hours on 64 Intel(R) Xeon(R) CPUs E5-2630 @2.30GHz. The
utilization of the RBF-based shape modification parameters allowed the design of a
smooth and manufacturable car shape.
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(a) boat tail (b) car height

(c) underbody front (d) underbody back

(e) mirror rotation (f) rear window

Fig. 2 DrivAer shape optimization: Part of car surface controlled by the six shape deformation
parameters and the corresponding deformation velocities (δxk/δbn).
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Fig. 3 DrivAer shape optimization: Evolution of the drag force value through the iterations of
the flow solver over the optimization cycles, normalized with the mean value obtained using the
baseline geometry. The flow solver run for 1000 iterations for each optimization cycle (a previously
“converged” solution was used to initialize the optimization, so only 100 iterations were executed
during the first optimization cycle). Kinks in the objective function value correspond to the first
iterations after each shape update (new optimization cycle). A decrease of more than 7% percent
can be observed in the “mean” drag value.
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Fig. 4 DrivAer shape optimization: initial (starboard side) and optimized (port side) geometries.
The latter is coloured based on the cumulative deformation of the car surface after 15 optimization
cycles. The areas with the highest deformation and, thus, the higher impact on the objective value
are the ones affected by the boat-tail and rear-window shape modification parameters.
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Fig. 5 DrivAer shape optimization: Pressure distribution over the initial (starboard side) and opti-
mized (port side) geometries .

Fig. 6 DrivAer shape optimization: initial (right) and optimized (left) geometries, coloured based
on pressure. Lowering the rear window, creating a spoiler at the end of the trunk and creating a
boat-tail shape for the rear side lead to an increased pressure at the rear part of the car, contributing
to drag reduction.
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