

University of Rome Tor Vergata

Go-kart aerodynamic optimization by means of CFD and RBF Mesh Morphing

Carlo Del Bene, Ruben Anello

Supervisor Prof. Marco Evangelos Biancolini

Assistant Supervisor Eng. Corrado Groth, Eng. Torbjörn Larsson

The aim of this study is the optimization of a go-kart bodywork shape, in terms of drag-force reduction, by means of CFD and RBF Mesh Morphing, evaluating the best configuration also in terms of downforce value and driver body size

Topic choice

Why go-kart aerodynamics?

- \bullet High \mathbf{C}_{d} , between 0,75 and 0,9
- Considerable lap-time improvement thanks to aerodynamic optimization

KP Studio lap-time simulator: 3 drag-force configurations analyzed Parma circuit (1154 mt) simulation 0,2 sec gained with the drag-optimized configuration!

Gestione Kart

Kart

Piste

CFD Model

CFD Model set-up inside ANSYS Fluent 16.0 at 90 km/h and *standard* atmospheric conditions

- **6,5 Million** fluid cells
 Realizable k-ε turbulence model
- Moving wall boundary conditions
- 1461 iterations at convergence
- Calculation activities
 run at UTV HPC
 facilities

CFD Results

Postprocessing using ANSYS CFD Post

- Fluid dynamic variables plots
- Streamlines
- Vectorial fields
- Custom plot surfaces definition

Streamline 1 5.275e+001	
· 3.956e+001	
2.637e+001	
1.319e+001	
0.000e+000 [m s^-1]	
	2
65 6	

CFD Results

Optimization areas chosen in terms of numerical drag-force and $\mathbf{C}_{\mathbf{d}}$ values

Z

 $D = \frac{1}{2}\rho S v^2 c_d$ D = 173,35 N $c_d = 0,794$

33% of total drag caused by the driver Relevant front bodywork contribution Lateral bodywork contribution apparently negligible but fundamental in driving flow over go-kart rear wheels

Drag-force histogram

(rbf-morph)

Tor Vergata

CFD Results

Downforce and \boldsymbol{c}_l numerical results

- Positive total downforce value
- 49% of total value caused by rear wheels
- Lifting contribution from front bumper

Carlo Del Bene, Ruben Anello

(rbf-morph) ANSYS

CFD and Mesh Morphing

TRADITIONAL APPROACH

OPTIMIZED SOLUTION AFTER n-CYCLES

MESH MORPHING

AUTOMATIC PARAMETRIC OPTIMIZATION

RBF Mesh Morphing

Mesh morpher used:

(rbf-morph)

Radial Basis Functions:

INPUT

- Radial Functions set
- Source points
- Assigned displacements

OUTPUT

Motion solution

Set-up shape changes

Design shape changes

RBF-Morph

RBF-Morph Grafic-User-Interface inside ANSYS Fluent

Models	General	Window 1
Materials	Mesh	
Phases	Scale Check Report C	Enable RBF Model
Cell Zone Conditions	Display	Config Distance
Operating Conditions	Cohur	
Mosh Interfaces	Solver	- DX MX NX
Dynamic Mesh	Pressure-Based Absolute	
Mesh Morpher/Optimizer	O Density-Based O Relative	Multi-Sol
Mixing Planes		Preview by Mouse DZ MZ NZ
Turbo Topology	Steady	Morph
Injections	○ Transient	CAD Settings
DTRM Rays		- Tools
Shell Conduction Manager	Gravity	U Shap to Ghu
Custom Field Functions		Show Detailed Info in Preview
Parameters	Help	
Profiles		
Units		Ortho
User-Defined		Pick
RBF-Morph		Tolerance (m) 1e-06 Last Saved List Displ
		Surfaces
		Report Displayed
		Loading Info
		Fast-loa
		Done .

(rbf-morph) ANSYS

Shape changes

Front panel vertical translation Motion set-up

- Chassis surface selection
- Definition of 3 selection encaps
- Unitary vertical translation of selected points inside selection encaps

(rbf-morph) ANSYS

Shape changes

(Ibf-morph) ANSYS

Locking surface sets

- Chassis surface selection
- Definition of 7 selection encaps
- Null motion prescribed to selected surfaces

Z

Shape changes

Morphing domain

Reduces the morphing action extent within the selected domain

Carlo Del Bene, Ruben Anello

(rbf-morph) ANSYS

Morphing action results

Nov 14, 2015 ANSYS Fluent Release 16.0 (3d, pbns, rke)

Nov 14, 2015 ANSYS Fluent Release 16.0 (3d, pbns, rke)

Front panel vertical translation

Baseline

Intermediate amplitude

Maximum amplitude

(rbf-morph) ANSYS

Front panel widening

Baseline

Intermediate amplitude

Maximum amplitude

Carlo Del Bene, Ruben Anello

(rbf-morph) ANSYS

Front bumper widening (centre)

Baseline

Intermediate amplitude

Maximum amplitude

(rbf-morph) ANSYS

Front bumper widening (side)

Minimum amplitude

Intermediate amplitude

Maximum amplitude

(rbf-morph) ANSYS

Upper front bumper rotation (side)

Minimum amplitude

Intermediate amplitude

Maximum amplitude

(rbf-morph) ANSYS

Design shape changes

Independent side bodywork shape changes due to go-kart asymmetry Width reduction

Baseline

Intermediate amplitude

Maximum amplitude

Design shape changes

Tor Vergata

Stretching

Baseline

Intermediate amplitude

Maximum amplitude

Frontal zone lowering

Baseline

Intermediate amplitude

Maximum amplitude

(rbf-morph) ANSYS

Rear inner corner rounding

Baseline

Intermediate amplitude

Maximum amplitude

(rbf-morph) ANSYS

Frontal zone reduction

Baseline

Intermediate amplitude

Maximum amplitude

(rbf-morph) ANSYS

Rear profile rotation

Baseline

Intermediate amplitude

Maximum amplitude

(Ibf-morph) ANSYS

The driver is exposed to the airflow and represents a major portion of the go-kart frontal area:

Evaluation of the driver body size effect on aerodynamic penetration

Evaluation of the optimal configuration related to different driver sizes

Stick-model inside Siemens Femap to move driver's arms and legs with few control points

Points coordinates and related displacements exported in PTS format compatible with RBF-Morph

File Modifica Formato Visualizza ?

57

-0.44263 0.11000 0.16140 0.00000 0.00000 0.00000 0 0 brake point-1 -0.42907 0.11542 0.16717 0.00000 -0.00334 0.00125 0 0 brake point-2 -0.41551 0.12083 0.17295 0.00000 -0.00666 0.00250 0 0 brake point-3 -0.40195 0.12625 0.17872 0.00000 -0.01000 0.00376 0 0 brake point-4 -0.38839 0.13167 0.18450 0.00000 -0.01334 0.00500 0 0 brake point-5 -0.37483 0.13708 0.19028 0.00000 -0.01666 0.00625 0 0 brake point-6 -0.36127 0.14250 0.19605 0.00000 -0.02000 0.00750 0 0 brake point-7 -0.34771 0.14792 0.20182 0.00000 -0.02334 0.00876 0 0 brake point-8 -0.33415 0.15333 0.20760 0.00000 -0.02666 0.01000 0 0 brake point-9 -0.32059 0.15875 0.21337 0.00000 -0.03000 0.01125 0 0 brake point-10 -0.30703 0.16417 0.21915 0.00000 -0.03334 0.01250 0 0 brake point-11 -0.29347 0.16958 0.22492 0.00000 -0.03666 0.01376 0 0 brake point-12 -0.27992 0.17500 0.23070 0.00000 -0.04000 0.01500 0 0 brake point-13 -0.26636 0.18042 0.23647 0.00000 -0.04334 0.01625 0 0 brake point-14 -0.25280 0.18583 0.24225 0.00000 -0.04666 0.01750 0 0 brake point-15 -0.23924 0.19125 0.24803 0.00000 -0.05000 0.01874 0 0 brake point-16 -0.22568 0.19667 0.25380 0.00000 -0.05334 0.02000 0 0 brake point-17 -0.21212 0.20208 0.25958 0.00000 -0.05666 0.02124 0 0 brake point-18 -0.19856 0.20750 0.26535 0.00000 -0.06000 0.02250 0 0 brake point-19 -0.18500 0.21292 0.27112 0.00000 -0.06334 0.02376 0 0 brake point-20 -0.17144 0.21833 0.27690 0.00000 -0.06666 0.02500 0 0 brake point-21 -0.15788 0.22375 0.28268 0.00000 -0.07000 0.02625 0 0 brake point-22 Enable RBF Model

(rbf-morph) ANSYS

Selection encap, translation

Selection encap, null displacement

Morphing domain

Comparison between driver sizes before and after morphing action

Optimization

Parametric optimization inside ANSYS Workbench (DesignXplorer)

(rbf-morph) ANSYS

>

....

Tor Vergata

(rbf-morph) ANSYS

Optimization based on custom *Design of Experiment*

- Design of Experiment built on the 17 parameters defined with RBF-Morph
- DOE size equal to 97 Design points, to ensure accuracy and to meet time constraints
- 600 iterations per DP (60000 total iterations) and 80 hours of overall calculation time

Outlin	ne of Schematic B2: Design of Experiments	∗ џ	×	Table o	of Schematic B2: Desi	gn of Experiments (Custom)				~ ₽ >
	A B ^				А	В	С	D	E	F
1		Enabled		1	Name 🔎	P1 - front-bump-side-wide-y 💌	P2 - front-bump-wide-y 💌	P3 - front-bump-side-trasl-z 💌	P4 - portanumero-trasl-z 💌	P5 - portanum
2	Ø Pesign of Experiments					0	0			
3	Input Parameters			2		0	0	0 74075	0	0
4	🗉 💶 Fluent (A1)			3	2	-0,875	0,5625	0,71875	0,125	1,18/5
5	P1 - front-bump-side-wide-y	V		4	3	-0,625	1,0625	-0,53125	3,375	0,8125
6	P2 - front-bump-wide-y	V		5	4	-0,375	0,4375	3,8438	3,625	1,3125
7	P3 - front-bump-side-trasl-z			6	5	-0,125	0,9375	1,0313	2,375	0,1875
8	🗘 P4 - portanumero-trasl-z			7	6	0,125	0,8125	3,5313	2,875	0,6875
9	P5 - portanumero-wide-y	V		8	7	0,375	1,3125	-0,21875	3,125	1,4375
10	🍄 P6 - allungamento_dx	V		9	8	0,625	1,9375	2,9063	0,875	0,3125
11	P7 - allungamento_sx			10	9	0,875	1,1875	3,2188	1,375	1,6875
12	P8 - pancia_dx_assottigliamento	7		11	10	1,125	0,6875	1,6563	0,375	1,9375
13	P9 - pancia_sx_assottigliamento	V		12	11	1,375	1,8125	1,3438	1,625	0,9375
14	P10 - arrotondamento_post	V		13	12	1,625	1,6875	0,09375	0,625	0,4375
15	P11 - passaruota_post_dx	V		14	13	1,875	0,0625	-0,84375	1,875	1,5625
16	P12 - passaruota_post_sx	V		15	14	2,125	0,3125	1,9688	1,125	0,0625
17	P13 - schiacciamento verticale_dx	V		16	15	2,375	1,5625	0,40625	3,875	1,0625
18	P14 - schiacciamento verticale sx	V		17	16	2,625	1,4375	2,5938	2,625	1,8125
19	P15 - schiacciamento orizzontale	7		18	17	2,875	0,1875	2,2813	2,125	0,5625
20	Output Parameters			19	18	-0,975	0,5375	2,0313	1,325	0,7875
21	E Eluent (A1)			20	19	-0,925	1,1875	-0,03125	3,475	1,8625
22	P16 - drag-force			21	20	-0,875	1,9875	3,4687	2,375	1,0375
23	P17 - downforce		~	22	21	-0,825	0,7625	1,8438	1,275	0,4125
Drong	arties of Outline : Design of Experiment	× 1	¥	23	22	-0,775	1,4125	2,5938	1,225	1,4375
горе		· •	î	24	23	-0,725	1,5875	-0,71875	3,225	0,4375
1	A D Droperty Value			25	24	-0,675	0,6125	1,0938	0,675	1,8375
1	Value			26	25	-0,625	0,0375	1,4063	2,225	1,2125
6	 Design of Experiments 			27	26	-0,575	0,3375	1,2188	2,175	0,1125
_	Design of	-		28	27	-0,525	0,2875	0,34375	1,175	0,5375
	Type	•		29	28	-0,475	1,6375	3,6562	1,475	0,2375
8	Total Number of Samples 97		× 4	Chart:	No data			·		>

Response Surface

Evaluation of parameters influence on the results by means of *Response Surface*

 Histogram/sensitivity curves

Max/Min search

Interpolated data quality

Choice of the optimal configuration through *Goal Driven Optimization*

•	~	•	Outl	ine of Schematic B4:	Optimizatio	on		• I	φx	Tabl	e of Schematic B4: Optimization						⊸ џ х
•	Scre	eening type			А		В	С	^		Α	В	C		D		^
	ont	imization	1				Enabled	Monitoring		1	 Optimization Study 				_		
opumization		2	Objectives and Constraints					-	2	Maximize P1/ Minimize D16	Goal, Maximize I	1/ (Default im	portance)		_		
*	100	0 samples	4	Maximize	P17				-	4	Optimization Method	Godi, Minimize P		portance)			
	D		5	Minimize	P16							The Screening o	ptimization me	thod uses	a simple		
**	Dra	g-force	6	Domain								approach based	on sampling a	nd sorting.	It supports		
	min	imization	7	🗉 🖬 Fluent (A	1)					5	Screening	input parameter	s. Usually it is u	used for pr	eliminary desig	n,	
			8	🍄 P1 - f	front-bump	o-side-wide-y						which may lead refined optimiza	you to apply of tion results.	ther metho	ods for more		
*	Dov	vnforce	9	6 P2 - f	front-bump	o-wide-y			_	6	Configuration	Generate 1000 s	amples and fin	d 3 candid	lates.		¥
		· · · · · · + · · · ·	10	tp P3 - f	front-bump	o-side-trasl-z			-	Sam	ples Chart					1	- 4 X
	max	kimization	11	φ P4 - [portanume	ro-urasi-z				3	2 4 4 2 2	2 3	3 1,5	2,7 2,7	7 4,5 4	5 3,5	180,8 71,891
			12	¢ P6 - 2	allungamen	nto dx			-								
	Outlin	a of Cohomatic D4: Optimization	15	+ 10 0	r	nto_ax			-			💌 💜 😵					
- 18	Ouuir	te of Schemauc B4: Opumization				assottigliamento			-				ANX 192			N/A	
		А			В	accettialiamente	াল্য		~						XV		
	1			Ena	bled			• 4	φ×			XXXXXXXII			XI//AAAA		X / /
	-	Optimization				Value		C I Enabled	Â			M XA /AVE	AH	~ 11			
	2					Value							MXV.	XV	KA AX		V /
	3	Objectives and Constraints										MARKAN		XX	XXAAA		
	4	Maximize P17									XXXXXXXXX		7XA	*//\\	XXX		EF
	5	Minimize P16			-			<u> </u>								$\langle \rangle $	
			5	Coloring method	areto Front	•		35 —- •		-1					0		169.35 55,156

Both drag-force and downforce value improvement

$$D_{opt} = 169,36 N - L_{opt} = 71,85 N$$

Table	able of Schematic B4: Optimization , Candidate Points										
	Α	В	Q	R	S	Т	U				
1	Poforonco	Namo	P15 -	P16 - d	lrag-force (N) 🛛 💽	P17 - d	lownforce (N)				
2	Reference	Ndille 🖸	schiacciamento_orizzontale	Parameter Value	Variation from Reference	Parameter Value	Variation from Reference				
3	0	Candidate Point 1	2,0781	🔆 169,36	-2,30%	★★ 68,126	15,65%				
4	0	Candidate Point 2	3,4773	- 175,66	1,33%	🔆 70,594	19,84%				
5	0	Candidate Point 3	1,2031	×× 179,22	3,39%	🔆 71,847	21,97%				
6	۲	Baseline	0	* 173,35		×× 58,908					

2,3% gain over the baseline **drag-force** value

22% improvement in terms of **downforce**

Comparison between baseline and drag-force optimized configurations (right side)

Comparison between baseline and drag-force optimized configurations (left side)

Comparison between baseline and downforce optimized configurations (right side)

Comparison between baseline and downforce optimized configurations (left side)

Medium-size driver optimization

- Shape changes
 contribution is higher
 with the small-size
 driver
- 3,1% improvement
 (6 N) with the small-size driver option

able o	le of Schematic B4: Optimization , Candidate Points												
	А	В		R	S	Т	U						
1	Deference	Namo		P16 - d	rag-force (N)	P17 - downforce (N)							
2	Reference	Name		Parameter Value	Variation from Reference	Parameter Value	Variation from Reference						
3		Candidate Point 1		169,36	-2,30%	★★ 68,126	15,65%						
4	\bigcirc	Candidate Point 2		- 175,66	1,33%	70,594	19,84%						
5	\bigcirc	Candidate Point 3		×× 179,22	3,39%	71,847	21,97%						
6	۲	base		★ 173,35	0,00%	×× 58,908	0,00%						

Small-size driver optimization

Table of	able of Schematic B4: Optimization , Candidate Points												
	А	В		R	S	Т	U						
1	Reference Name		_	P16 - d	rag-force (N)	P17 - downforce (N)							
2	Reference	Name 🔛		Parameter Value	Variation from Reference	Parameter Value	Variation from Reference						
3	0	Candidate Point 1		💑 161,79	-3,12%	★★ 62,02	16,32%						
4	0	Candidate Point 2		- 169,91	1,74%	🐥 64,07.	20,18%						
5	0	Candidate Point 3		×× 173,73	4,03%	45,06	22,04%						
6	۲	base		★ 167,00	0,00%	xx 53,31	0,00%						

💠 10% total

improvement of the
optimized small
driver-size
configuration over
the standard
bodywork
configuration with
medium-size driver

Carlo Del Bene, Ruben Anello

(rbf-morph) ANSYS

Comparison between optimized configurations in both medium- and small-size driver options

The results of the parametric optimization show:

- 2,3% drag-force reduction. Predictable result since the performed study has been developed on an already designed bodywork hence presumably optimized
- 22% downforce increase. Consistent positive result which indeed highlights the poor optimization, in terms of downforce, of the baseline bodywork configuration
- Variability of the optimal drag-force wise configuration with the driver body size. Predictable variability due to the high contribution of the driver to the total drag-force value
- Invariability of the optimal downforce wise configuration with the driver body size. Contrary to what is observed in terms of drag-force, the contribution of the driver to the total downforce value is not significantly high. Therefore the optimal configuration is not affected by the driver size variation

Authors:

- Carlo Del Bene, <u>carlodelbene@gmail.com</u>
- Ruben Anello, <u>anello.ruben@gmail.com</u>

Supervisor:

Prof. Marco Evangelos Biancolini, <u>biancolini@ing.uniroma2.it</u>

Software used:

- RBF-Morph, <u>http://www.rbf-morph.com/</u>
- ANSYS Fluent, DesignXplorer, <u>http://www.ansys.com/</u>
- Siemens PLM Femap, <u>http://www.plm.automation.siemens.com/en_us/products/femap/index.shtml</u>

