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Pathology Solution Outcome







Aortic Aneurysms

Ascending Aorta —

Aortic Root

Healthy Aneurysm Repaired
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Aortic Aneurysms

5-10 cases per 22% of patients with ruptured Linked to age, sex, hypertension,
100,000 person/year aneurysm die before reaching genetic conditions
a hospital
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Clinical problem

\
Current practice:
Surgery is determined by diameter.
J
Problem: Post-operative complications:
> |t’s too generic » Hemorrhage
» Unpredicted aneurysm rupture » Infection
» Unnecessary intervention » Cardiac fatigue.

+ Clinical need to gain insight of the patient’s
HEMODYNAMICS & WALL DETERIORATION
for accurate personalized treatment
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Surgical decision
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Surgical decision
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Surgery
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Aortic Aneurysm

Patient specific:

>
>

>

Patient specific diagnosis
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Patient specific diagnosis

Aortic Aneurysm

Patient specific:
» Aorta Shape

>
>

>

t i
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Aortic Aneurysm

Patient specific:

| 4

» Valve morphology
» Valve pathology

» Hemodynamic BCs

>

Patient specific diagnosis
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Aortic Aneurysm

Patient specific:

| 4

» Valve morphology
» Valve pathology

» Hemodynamic BCs

>

Patient specific diagnosis

Healthy

Diseased
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Patient specific diagnosis

Aortic Aneurysm

Patient specific:

>
>
>
>

» Aortic wall
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Computational tools for personalized treatment

Fluid biomarkers

Structural biomarkers
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Section |

Computational methods for accurate turbulence
and viscosity modelling



Introduction

No standardized methodology exists for the computation of cardiovascular flows

CFD results are influence by the modeling set-up

OBIJECTIVE
Quantify the effect of model choices CFD results

> Viscosity » Turbulence

Introduction ( Computational Methods 1 CFD Biomarkers Patient Specific FSI Final Conclusions




Introduction

Viscosity

» Blood is a mixture of plasma and red blood cells with a
shear-thinning behaviour.

» Eddy development and near-wall flow is influence by this
property [1].

» It is argued that, under the high shear-rates present in
the aorta, the variations in viscosity are negligible and
constant viscosity can be assumed.

»
|

N

Shear rate

Viscosity

[
»

[1] Wyk et al., “Non-Newtonian perspectives on pulsatile blood-analog
flows in a 180° curved artery model”, Physics of Fluids 27 (2015)

Introduction ( Computational Methods 1

Turbulence

» Turbulence causes bursts of shear stress, damaging
endothelial cells [2].

» Turbulence generates additional stresses on aneurysm
wall leading to wall vibration and increases the rate of
wall dilation [2].

» Pulsatile flow with a low averaged Reynolds number,
averaged Reynolds suggests laminar flow.

» Flow deceleration during diastole favours turbulence
generation.

LAMINAR FLOW TURBULENT FLOW

—5 0 O
=" ) Ofe
. .@%%oaofo

[2] Tan et al. “Analysis of flow patterns in a patient-specific thoracic
aortic aneurysm model,” Computers and Structures 87 (2009)
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Previous work

Viscosity Turbulence
Newtonian model causes: Laminar model causes:
> Underestimation of WSS and hemolysis » WSS underestimated between 0-6% (depending on author)
» Growth and decay of eddies > Platelet activation and hemolysis
» Premature turbulent transition » Underestimated TKE

‘ﬁ*’)ﬂ‘% No publication exists on the

‘ﬁ"/f),f’ combined effect of viscosity and

&c)')/;)’) i turbulence models )
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Objective

Viscosity Turbulence

Newtonian [ ~Laminar ]

"~ Non-Newtonian | [ 1ES 50 /C ]

Understand the interaction between models
and
the importance of the model choices
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Scope

Viscosity Turbulence
» Newtonian: (%) = u > No model: Laminar flow model (LFM)
> Non-Newtonian: Carreau viscosity (CV) > Turbulent: LES
n—1 -
u(3) = pon + (po — po) [1+ (A9)?] 2 Ui _ ),
(3.’1?@'
@+_.@__laﬁ+ i aﬁt _aTij
ot ox;  pox; y(?:rj ox; 0x;
Uy = 3.5 mPa-s
o = 56 mPa-s | )
Tij — 5TkkOij = —2VsgsSij
A=3313s A R ge0
B s - Dynamic Smagorinsky-Lilly (DSL)
Vsgs = (CsA)7|S] :
‘ subgrid-scale turbulence model
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Model setup

=]
Y
|

=]
[%]

=]
o

Mass flow inlet

Mass flow [kg/s]
=

WYV VWY i Windkessel outlets

Aortic valve
» Healthy
» Stenotic

10 days per scenario
» 20 heart beats
» 32 cores
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Results

Laminar LES

20
18
16
14
12
10
8
]
4
2

WSS [Pa] WSS [Pa)

» Vortex structure is influenced by the turbulence model.
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Results

HEALTHY: LES-CV LES-NV LFM-CV LFM-NV

» Non-Newtonian viscosity has greater impact (2.9-5.0%)

. . T 3 ©
on wall shear stress than Large Eddy Simulation g =
. v
turbulence modelling (0.1-1.4%). o2 ° §
. . o "1 \ A - K
» Wall shear stress is underestimated when considering " X 1
Newtonian viscosity by 2.9-5.0%.
STENOSIS:
Y \ A \
10 N 1
£ / | g
=6 | 7))
& . “ 02
<§( 4 \ \‘ \ \*-, %
2 2 \% \ R \, A \x =
0 -1
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Results

» The contribution of non-Newtonian viscosity is amplified

when combined with a LES model.

Introduction ( Computational Methods 1

CFD Biomarkers

2.0

1.8

1.6

IF [Pa]

1.4

1.2

1.0

IF = p/ps
Healthy Stenosis
Turbulence model
Systole TA  Systole TA
Laminar 1.160 1.277 1.148 1.290
LES 1.165 1.286 1.166  1.297
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Results

TAWSS [Paj
w
3

30 35 40

0 5 110 l‘5 2‘0 2‘5 30 3:5 40 0 5 IJO 1A5 20 2;3
Cycles Cycles
A )\ . Y )

» Cycle-to-cycle variability can impact the results as much |

as the numerical model if insufficient cycles are 4 . \ \ \

performed. ’

5 HB 10 HB 15 HB 20 HB
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Future works

» Additional viscous models: Power law, Casson, Cross
» Realistic aortic jet shapes

» FSI| effects
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Section |l

CFD biomarkers for aneurysm growth prediction



Computational tools for personalized treatment

20 o
BE@

{ Fluid biomarkers }

Patient specific data Q&
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Introduction

» Hemodynamics conditions influence the biomechanical
processes in the arterial wall:

Elevated WSS : Normal WSS

Endothelial damage.
Elastin and smooth muscle cell damage.
Extra cellular matrix dysregulation.

» A debate exists on whether genetic conditions or

hemodynamics are responsible for the development Of Guzzardi et al, “Valve-Related Hemodynamics Mediate Human Bicuspid Aortopathy:
Insights From Wall Shear Stress Mapping,”J. Am Coll Cardiol. 66 (2015)
aneurysms.

IN THIS SECTION:
The correlation between fluid biomarkers and
aneurysm growth will be assessed.
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[ONe)

Dataset

% 33 patients (CHU Rennes, Dijon and Toulouse)

Aortic valve area and jet velocity:

e Echocardiography: 20 patients
* MRIflow: 5 patients
* No data: 8 patients

( '\} Scans with average spacing 41 months

‘Q

16 Tricuspid 15 Bicuspid T1
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Growth analysis

After 34 months After 17 months

60 60
Patient 1 . o . er | Patient 2
E 0
£ | plamETERALONG | °
£ 15 THE CENTERLINE 45
£
5 40 40
35 ] 35
30 30
0 02 04 06 D08 | 0 02 04 06 D08 1
16 " i 16 .
@ Change @ Change
,E 4t Growth Rate | | 14—~ | Growth Rate | |
E » - 12
tf::o 10 ] DIAMETER CHANGE 10 Lo
2 g 1 AND — 5
(@)
S 8 ] GROWTH RATE 5
£ 4 4
©
5 2 i
G.R. = 0.94 mm/year ) ) ‘ G.R. = 10.27 mm/year
. 0 02 04 06 08 1 0 02 04 06 08 1
Position on centerline Position on centerline

Growth rate = Diameter change per year [mm/year]
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Fluid Biomarkers

WALL SHEAR ANALYSIS
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Time-average WSS

VIV
v

1 T
TAWSS = / (WSS(t)| dt
0

Introduction Computational Methods

Fluid Biomarkers
Wall Shear

Oscilating Shear Index

@k
N

( [T WSS(t) dt )
OSI=05(1- 1=
[ IWSS(t)| dt

( CFD Biomarkers 1

Shear Angle

2
SA = —arctan
T

Patient Specific FSI

(
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WSS Circ
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Fluid Biomarkers
Wall Shear

Time-average WSS Oscilating Shear Index Shear Angle

R
0 1 2 3 0 0.5
TAWSS [Pa] oSl
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Fluid Biomarkers
Flow

FLOW ANALYSIS
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Flow Asymmetry:
Offset of flux centroid.

Normalized by mean radius.

FA . ||PC'entE’r — PF_M"C‘H

leﬂﬂtﬂ

Angle: Between flow and plane

Flow Asymmetry - Bounded:

Offset of bounded fast-moving region centroid
Normalized by mean radius.

HPC'enter - PFﬂ'fGZD% H

F Ay = R
Flow Dispersion:
D — Aoy,
ATotaE
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Fluid Biomarkers
Flow

( CFD Biomarkers 1
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Results: Growth
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Position along centerline

The maximum diameter was located, on average,
on PC = 0.25 for TAV and on PC = 0.40 for BAV.
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Results: Growth
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Results: Growth
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Initial diameter does not correlate with GR
(R=0.04)

Introduction Computational Methods ( CFD Biomarkers 1 Patient Specific FSI Final Conclusions




TAWSS [Pa
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CFD Biomarkers

N

6 days per patient

Results: Fluid biomarkers > 6 heartbeats

» 16 cores
» 33 patients
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Results: Correlations

PEAK SYSTOLE SHEAR ANGLE
» External wall of BAV patients.
» Weak correlation with GRyand GR, .

» Suggest reversed and rotating flow are linked to
wall degeneration.

» Agrees with previous works:

FSI on Marfan syndrome patients

MRI flow on BAV patients

> Only 17 BAV patients > Statistical relevance is debatable.

> Largest CFD study on aneurysm growth up to date.

CFD Biomarkers

Introduction Computational Methods (

TAV BAV
GR GR GR GR
Biomarker  Measure v L b .
R p R p R p R p
Max -0.223  0.407 | -0.274  0.304 || -0.160 0.541 | -0.256 0.321
TAWSS
Mean -0.054  0.843 | -0.190 0480 | -0.128 0.623 | -0.209 0.421
Max -0.132 0.626 | -0.162 0.549 || -0.053 0.841 | -0.148 0.570
PSWSS
Mean -0.178  0.510 | -0.282  0.291 || -0.095 0.717 | -0.213 0.411
08I Mean -0.030  0.911 | 0.108 0.692 || -0.089 0.734 | 0.002 0.995
SA TA-Mean | 0.061 0.823 | -0.048 0.860 0.255 0.324 | 0.274  0.287
- PS-Mean | 0.004 0.987 | -0.048 0.859 || -0.482 0.050 | -0.481 0.051
RFR TA 0.034 0.899 | 0.073 0.787 | -0.266 0.303 | -0.306 0.232
PS 0.048 0.859 | 0.072 0.792 0.243  0.347 | 0.275  0.286
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Future Works

> Larger time window

Velocity
cmys)

> MRI 4D calibrated aortic jet

osaddle point
o stable focus

> Topological WSS skeleton analysis e node ST
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Section Il|

Patient-specific FSI models



Computational tools for personalized treatment

Fluid biomarkers

® &

Patient specific data ‘Q&

q,

Structural biomarkers
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Computational tools for personalized treatment

Personalized hemodynamic conditions

> Aortic jet derived from MRI 4D flow Fluid biomarkers

> Windkessel outlets calibrated with patient’s data

Personalized aorta wall

» Thickness Structural biomarkers

> Elasticity
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Methods: Aortic jet

MRI 4D Flow

Velocity
(cm/s)
150.

Velocity extraction on aortic valve plane Transfer onto the fluid model
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Methods: Aortic jet

Resampling and filtering:

» Finer grid (x3) using modified Akima interpolation: reduced undulations and over-flattening.

» Gaussian 2-D filter was applied to smooth each of the three velocity components.
Smoothing kernel with standard deviation 2.5.

V [em/s]

I150

1100

1 50

0
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Methods: Aortic jet

Introduction

Computational Methods

CFD Biomarkers

Patient Specific FSI

140

120

100

Velocity [cm/s]
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DATA

Measure Value  Unit
inca 456.2 ml /s
Qiin 15.3 ml /s
Qmean 6.89  1/min
@pa 3.48 1/min
Psys 60 mmHg
Py (0.0 mmHg
At 0.1 S
Apr 185.2  mm?
Apce 20.4 min?
Ars 67.3  mm?

Introduction

Computational Methods

Methods: Windkessel

/

e METHOD —orpioi

Prn,enn
Ry = :
anean
R: = Rr/fi,
poNT Q*ma:r = Qﬁ-l?-ﬂ &#

\

R; Ry
C;= ;04 =~ =03 =~
fiCr Rg, T Ra,

CFD Biomarkers (

RESULTS
Component Value
Ry 3.858%10°
Ripr 6.504x 107
Car 1.587x107%
Ryvco 3.569x 107
R, 6.016x 10°
Crec 1.716%10-¢
Rp,s 1.065x% 107
By 1.796x10%
Crs 5.746x10~10
Rava 2.575% 106
Ry, , 4.340% 107
i 9.407x10~10

.

\
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Methods: Aortic wall - Clinical data

4 sections: Anterior, lateral, posterior and medial

0.6

0.5F

o o
w S

Stress [MPa]

o
n

01F

Longitudinal
Circumferential

L 1 1 1 1
0 005 0.1 015 02 025
Strain [m/m]

Equi-biaxial tensile test performed in the University Hospital of Dijon.

S. Lin, ”Biomechanics of human ascending aorta and aneurysm rupture risk assessment”,
PhD Thesis, 2021.
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Methods: Aortic wall - Hyperelastic material

0.2
Ascending aorta: Third order Yeoh material model. o
3 JR—
_ (T. _ 2)? H
W =) Cio(l; - 3)". :
=1 50.1 -
The model coefficients for each quadrant were obtained after %
performing a curve fitting via minimization of normalized error
of the circumferential strain-stress curves.
5 .
0 0.1 0.2
Strain
Supra-aortic vessels and DA: Second order Yeoh material model
derived from estimated pulse wave velocity (PWV).
e 2?"1;,0 2

(2% 10° 7, )P T,
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Methods: Aortic wall - Model definition

Spatially varying material properties

Ascending aorta: 2 node interpolation 000@Acending aorta

D, . O Arch set 1

Dn 5
Tn = Tsl i

+ Tso
Dﬂ.,sl + Dn,s? ) Dn“-?l + Dn,s? © ArCh Set 2
@ Archset3
Aortic arch: 3 node interpolation @ Descending aorta
pmed _ p# Diim | @® Supra-aortic vessels
n.u T, DLim _D:m
1.2 T
e —
hin Dnmd 1k b0 e
T =T 0" I TR .. _ i s
¥ Dy Dimed ™ X piib-y: Doed £ =
", 08} o
1 m(SJ 0.4} ',-"/ e
DA: Constant properties T i -
.. //”‘
00 0.05 0t1 O.IIS 0.2
Biaxial Strain

Introduction Computational Methods CFD Biomarkers ( Patient Specific FSI 1 Final Conclusions




Methods: Aortic wall - Model definition

Initial
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Methods: Aortic wall - Model definition

Smooth
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Methods: Aortic wall - Boundary conditions

» Radial displacement on outlets
» Viscoelastic support on wall

Knj = (KSoft + WdeKSpine) A’n en;;a

Coefficient Value

Koos 1.5 x 10* Pa/m

Kapinie 106 Pa/m
Wy 0.53
W, 0.60
W, 0.02
W, 0.04 54 s

Geronzi et al., “Calibration of the Mechanical Boundary Conditions for a Patient-Specific
Thoracic Aorta Model Including the Heart Motion Effect,” IEEE Trans Biomed Eng. 70-11 (2023)
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Methods: Aortic wall - Zero pressure

Augmented Sellier’s Inverse Method

> Inverse problem: loads and final deformation are known, initial geometry is to be computed.

> The zero-stress state will be approximated by the zero pressure state.

Reference

Introduction

Zero pressure

Computational Methods CFD Biomarkers

Emax

PRI TR SR N W W —re—"

| I——

P P — P ——

2.5 3 3.5
Iteration

4

45
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Results: Stress

S 120

Arterial Pressure (mm H

Arch: 345 kPa ' Sytole

Caused by high, unrealistic
curvature and shell formulation

Diastole

External wall: 50-80 kPa

oy [Pal

Internal wall: 100-105 kPa
42% of maximum yield strength
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Results: Stress - Growth

Stress Growth rate

-
L

-

3
0.8 >
E
g ° W
% ; T
° 4 04§ b5
(=]
& e
2 0.2 E
=
O —
0 48]
©
| -
E
o
s ) 5

» No evidence of a correlation between stress and
aneurysm growth.

» Locations with highest stress concentration show 7—h——t——— e g

” o 0 0.2 0.4 0.6 0.8 1
null growth. ) Position along centerline (PC)
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Conclusions

o == . : . . : : .
A Clinical outcomes: one patient only, it is not possible to hypothesise on the relationship between
@ growth and stress.

(ON®)
A large cohort should be analysed, considering both healthy, stable and dilating aneurysmes.
A model combining patient specific hemodynamics and aorta wall has been presented. Further
improvements will enable an accurate estimation of risk of rupture.
Introduction Computational Methods CFD Biomarkers (
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Introduction

Final Conclusions

» Non-Newtonian viscosity is necessary.

» LES is optional, but computational requirement is negligible.

» Aneurysm growth could be related to:
BAV: Peak systole shear angle.

» Larger cohort with MRI flow data is needed.

» Hemodynamic personalization requires MRI 4D flow data.

» Aorta wall definition requires spatially varying thickness and elastic properties.

» Accurate risk of rupture estimation requires high fidelity models.

Computational Methods CFD Biomarkers Patient Specific FSI
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