Human Body Models Customization by Advanced Mesh Morphing: Parametric THUMS

Emanuele Di Meo CAE Senior Engineer - RBF Morph Prof. Marco Evangelos Biancolini Associate Professor - University of Rome "Tor Vergata"

THUMS User Community Meeting November 12th, 2024

Shape parameterization strategy

- Geometric parameterization by mesh morphing
- The principle is to take the control on a set of point and to transfer the deformation to the whole mesh
- A new shape of the CAE model ready to run
 - o for structural analysis in the FEA solver
 - o for flow analysis in the CFD solver

Radial Basis Functions mesh Morphing

- We adopt Radial Basis Functions (RBF) to drive mesh morphing (smoothing) from a list of source points and their displacements
 - o Surface shape changeso Volume mesh smoothing
- RBF are recognized to be one of the **best mathematical tool** for mesh morphing

Realinguis burnin Fast Radial Basis Functions for Engineering Applications

$$\begin{cases} s_x(\mathbf{x}) = \sum_{i=1}^N \gamma_i^x \varphi(\|\mathbf{x} - \mathbf{x}_{s_i}\|) \\ s_y(\mathbf{x}) = \sum_{i=1}^N \gamma_i^y \varphi(\|\mathbf{x} - \mathbf{x}_{s_i}\|) \\ s_z(\mathbf{x}) = \sum_{i=1}^N \gamma_i^z \varphi(\|\mathbf{x} - \mathbf{x}_{s_i}\|) \end{cases}$$

Radial Basis Functions mesh Morphing

www.rbf-morph.com

- No re-meshing
- Can handle any kind of mesh
- Can be integrated in the CAE solver (FEM/CFD/FSI)
- Highly parallelizable
- Robust process
- The same mesh topology is preserved (adjoint/ROM)
- CAD morphing (iso-brep)

rbf

We make CAE models parametric

- RBF Morph makes the CAE model **parametric**
- Shape parameters are driven by **an orchestrator**
- Shape parameters can be used to generate snapshots for real time Digital Twins (ROM/AI)

We make CAE models parametric

- Morphing is a **key enabler** for optimization and Digital Twins
- The turnaround time of the optimization is usually reduced by a factor five (weeks becomes days)

Interactive Digital Twins

- High-fidelity simulations big data for training AI models:
 - o Design stage: steer new projects more effectively
 - o Operation stage: **real-time** interactions are key enablers of digital twins
- Challenges:
 - o High level of automation requiredo Replicable, easily deployable workflow
- We present a comprehensive solution based on CAE tools and FMI standard, powered by **Unity rendering** and exported to **Meta Quest 3** AR/VR

Applications 🛹 🐼 🦐 拉 🏨

Reusing the LS-DYNA model of a different car

Morphing onto

the performances

starting mesh

Morphing onto the style (parameter-free)

Honda Accord mesh matching the Chevrolet Silverado shape

(parameter-based)

Honda Accord mesh matching the Chevrolet Silverado shape and crashworthiness needs

Reusing the LS-DYNA model of a different car

1	I.	LS-DYNA	
2	0	Engineering Data	~
3	۲	Model	~
4	٢	Setup	 Image: A second s
5	Û	Solution	 Image: A start of the start of
6	۲	Results	~

D

Parametric THUMS

- The morphing is performed on the THUMS Occupant AM50 model through an automated procedure
- Each edge of the THUMS is chosen as a set of source points which drive the overall mesh morphing

Parametric THUMS

- The setup is performed in three steps:
 - o Source points identification (LS PrePost)
 - o Mesh Morphing (rbfCAE)
 - o Morphing verification (Python script)

Parametric THUMS – Source Points

 Source points identification is performed in LS PrePost by exporting specific entities corresponding to the THUMS model edges on AM50 and AM95

*SET_NODE_LIST_TITLE			IST_TITLE						
С	ollo	_50							
\$	#	sid	da1	da2	da3	da4	solver	its	-
8900001 0.		0.0	0.0	0.0	0.0M	IECH 1			
\$	#	nid1	nid2	nid3	nid4	nid5	nid6	nid7	nid8
	895	00743	89500071	89500065	89500070	89000069	89000070	89000065	89000071
	890	00743	89000044	89000883	89000742	89000885	89000888	89000741	89000890
	890	00740	89000893	89000892	89000738	89000059	89000066	89000047	89000067
	895	00047	89500066	89500059	89500738	89500892	89500893	89500740	89500890
	895	00741	89500888	89500885	89500742	89500883	89500044	0	0

Parametric THUMS – Mesh Morphing

- RBF displacements are calculated for all the nodes on selected entities
- Based on all RBF displacements, the PTS-file is generated to take AM50 nodes to AM95 position
- This step is needed to apply displacement to the AM50 model keeping it iso-topological

Parametric THUMS – Morphed model

- This setup has been replicated for each region (except from the head) optaining a morphed working case in **less than 10 seconds**
- THUMS model can be adapted to both intermediate and smaller shapes through a scale factor

Parametric THUMS – Morphing verification

- To validate the mesh morphing a minimum pinball mean radius has been defined
- A comparison between original and morphed nodes is shown in these images

Parametric THUMS – Sled test

- The parametric THUMS sled test validation set has been analyzed
- Skin and bones drive morphing
- The morphed THUMS has been verified also for intermediate and smaller shapes

Parametric THUMS – Sled test

Parametric THUMS – Sled test

- Displacements have been evaluated between different THUMS model
- The parametric THUMS morphed model (AM50m95) shows a strong fit with the original AM95 curve

Parametric THUMS – Positioning

- A procedure for THUMS positioning has been implemented on the AM50 pedestrian model
- The setup is performed in three steps:
 - o Skin model positioning (Blender)o RBF displacement evaulation (Python script)
 - o Mesh Morphing (rbfCAE)

Parametric THUMS – Positioning

- The THUMS skin mesh has been extracted and imported as .stl file in the Blender software
- A parametric rig has been created through the rigify tool associating the mesh and the rig
- The articulated mesh is exported as .ply file

Parametric THUMS – Positioning

- A custom script reads the new position and an RBF displacements file is created
- The RBF displacements are applied to the original AM50 Pedestrian model to be morphed into the final position
- Morphing calculation is performed in about **45 seconds** through rbfCAE
- Currently implementing a verification method for mesh quality

Parametric THUMS presentations at aCAE Grand Challenge 2024 and EMMS 2024

ON DEMAND

https://www.carhs.de/en/grand-challenge-proceedings.html

https://link.springer.com/book/10.1007/978-3-031-63755-1

THANK YOU FOR YOUR ATTENTION!

emanuele.dimeo@rbf-morph.com

linkedin.com/company/rbf-morph

youtube.com/user/RbfMorph

rbf-morph.com

