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Abstract: Aerodynamics is a key factor in time-trial cycling. Over the years, various aspects have
been investigated, including positioning, clothing, bicycle design, and helmet shape. The present
study focuses on the development of a methodology for the aerodynamic optimization of a time-trial
helmet through the implementation of a reduced-order model, alongside advanced simulation tech-
niques, such as computational fluid dynamics, radial basis functions, mesh morphing, and response
surface methodology. The implementation of a reduced-order model enhances the understanding of
aerodynamic interactions compared to traditional optimization workflows reported in sports-related
research, facilitating the identification of an optimal helmet shape during the design phase. The
study offers practical insights for refining helmet design. Starting with a baseline teardrop profile,
several morphing configurations are systematically tested, resulting in a 10% reduction in the drag
force acting on the helmet. The reduced-order model also facilitates the analysis of turbulent flow
patterns on the cyclist’s body, providing a detailed understanding of aerodynamic interactions. By
leveraging reduced-order models and advanced simulation techniques, this study contributes to
ongoing efforts to reduce the aerodynamic resistance of time-trial helmets, ultimately supporting the
goal of improved athlete performance.

Keywords: aerodynamics; reduced-order model; mesh morphing; optimization; cycling

1. Introduction

In recent years, aerodynamics has gained increasing importance across various sports.
Initially confined to motorsports, such as Formula and GT racing, aerodynamics has now
found application across a diverse range of athletic disciplines. From speed-focused sports
like cycling, ski jumping, sprinting, and skating to ball sports, such as football, tennis, and
golf, extensive research has been conducted on integrating aerodynamic principles into
equipment, clothing, and even ball designs [1]. In this context, cycling has long prioritized
aerodynamics, with a notable increase in its significance in recent years, particularly within
the time-trial discipline.

A time trial in cycling is a race format in which participants, individually or as part of a
team, race against the clock rather than directly against each other. In such races, achieving
optimal aerodynamics is critical to minimize drag, which directly affects performance by
reducing the braking effect. Aerodynamics plays a crucial role in cycling, as races are often
decided by seconds or even fractions of a second. There are numerous examples of this
importance [2], one of the most notable being Greg LeMond’s victory in the 1989 Tour de
France. LeMond overcame a 50 s gap to the overall leader, Laurent Fignon, in the final stage,
an individual time trial, to win the Tour by just 8 s. This remarkable comeback was aided
by LeMond’s advanced equipment, which included airfoil-shaped tubing, an aerodynamic
helmet, and a disc rear wheel, while Fignon rode a standard bike without a helmet.
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Previous research [3,4] indicates that aerodynamic drag contributes up to 90% of
braking at speeds above 40 km/h, with rolling resistance responsible for the remaining
portion. Optimal cyclist positioning plays a crucial role in minimizing aerodynamic drag,
which accounts for 60–82% of the total drag [5,6], while helmet choice can influence drag
by approximately 2–8% [7,8]. These topics have been extensively studied by cycling teams
and specialized research groups. Despite the limitations imposed by the Union Cycliste
Internationale’s regulations, many innovative solutions have been proposed. Notable
examples include the Visma Lease-a-Bike time-trial helmet presented in March 2024 [9] and
the use of chest fairings [10].

In this context, the study focuses on creating a methodology using a reduced-order
model (ROM) for the aerodynamic optimization of a time-trial helmet. Compared to a
standard optimization workflow using response surface optimization (RSM), implementing
a ROM provides a more comprehensive understanding of the aerodynamic interactions,
describing complete fields such as pressure and turbulence intensity. The ROM, through
the extraction of dominant system modes, allows a real-time evaluation of the model
amid the flow complexity and vast amount of data analyzed in full-order simulations,
as highlighted in several research studies with reference to linear, non-linear [11,12], and
dynamic systems [13], with particular application in the aeronautical field [14–16]. The
use of a ROM allows a quick and accurate assessment of the dominant features of the
system, providing in-depth support during the design phase and giving direction to the
design choices to be made. The ROM can be enhanced with experimental data from the
cyclist and helmet. For instance, pressure sensors can be installed on the cyclist’s body and
helmet to measure pressure values at various points. These data can then be integrated
with simulation data to create an even more accurate ROM. Although many research
studies on aerodynamic optimization in sports engineering have been conducted, to the
authors’ knowledge, the use of ROMs in these areas is not yet widely adopted, particularly
in cycling.

The aim of the present study is to deploy an accurate ROM for time-trial helmets’
interactive optimization. The main novelty of this contribution lies in extending traditional
optimization procedures used in sports aerodynamics through the integration of a ROM,
enabling a more detailed understanding of flow interactions and supporting the design
phase with real-time assessment of aerodynamic fields. The material presented is organized
as follows: Section 1, this introduction, presents the state of the art regarding advanced
CFD adoption in time-trial cycling; Section 2, the mathematical background and the imple-
mentation details of the proposed approach are given; Section 3, the case study investigated
is detailed; the results are presented and discussed in the Section 4 and then completed by
Section 5.

2. Methodology

The implementation of a reduced-order model in a computational analysis involves
several steps across the different simulation phases. With a particular reference to model
order reduction applied to fluid dynamics [17–20], the proposed methodology is devel-
oped as illustrated in Figure 1. First, a baseline model is implemented, and simulations
are performed. The parameters of interest, which may be geometrical or physical, are
then identified. Physical parameters are related to quantities describing the physics of
the problem, such as force, inlet velocity, or applied pressure, while geometrical param-
eters are connected to the shape of the simulated elements and can be handled through
parametrization of the computer-aided design (CAD) model or by parametrizing the mesh
using mesh morphing techniques. The parameterization of the computational model allows
for the implementation of a design of experiments (DoE), resulting in the creation of a
series of design points. Each design point is simulated to generate a set of full-scale (or
full-order) model simulations. The results of these simulations are stored and used to build
the ROM. The ROM is generated using simulation results through a combination of modal
bases. ROM exploration provides detailed information regarding the evaluated quantities
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across the parameter range, with valuable insights for design optimization. In parallel,
response surface methodology (RSM) [21] is employed to develop a single-value optimiza-
tion framework. RSM uses statistical techniques [22] to create a functional relationship
between the input parameters and the output ones, enabling single-value optimization
and multi-objective optimization [23]. While RSM focuses on finding the optimal set of
parameters, such as minimum drag coefficient, ROM offers a comprehensive overview of
the system’s behavior across the entire range of input parameters. It is worth noting that
the approach used for global output exploration with RSM and ROM exploration in the
reduced space requires interpolation for both methods to obtain the outputs (such as a
global parameter like drag or a reduced coordinate of a ROM) as a function of the inputs.
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2.1. Model Order Reduction

Model order reduction (MOR) is a mathematical technique that approximates complex
high-dimensional systems to reduce the number of degrees of freedom (DoFs) while
preserving essential dynamics. Over the years, several MOR methods have been developed
to improve computational efficiency, such as the center manifold, Lyapunov–Schmidt (L-S),
Galerkin, principal orthogonal decomposition (POD) methods [19,24,25], and principal
component analysis (PCA) [26].

The POD method is a projection-based order reduction method widely used to obtain
reduced-order models (ROMs) for dynamic analysis and for parametric design of complex
systems. POD identifies the system’s behavior by transforming the original variables (such
as pressure, temperature, or stress) into a set of orthogonal modes. This result is obtained
by running a series of simulations of the full-order model and collecting the results of each
simulation in datasets called snapshots. The creation of a ROM using POD is based on a
series of sequential steps. Given a system described by a high-dimensional state vector
x ∈ Rm (where m is the number of spatial points or degrees of freedom), snapshots of
the full-order model solutions at different parameter configurations are evaluated. Each
snapshot differs from the baseline because it is obtained with different physical input
parameters, different geometrical input parameters, or both; however, to adopt this method,
the snapshot must be defined consistently with respect to the baseline, i.e., adopting the
same order and the same number of spatial points or degrees of freedom m. After collecting
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the snapshots, a snapshot matrix A is constructed, with columns corresponding to the
number of snapshots, and singular value decomposition (SVD) is applied to decompose it
into the product of three matrices [27]:

A = UΣVT (1)

where

• A ∈ Rm×n is the snapshot matrix, where m is the number of spatial points or degrees
of freedom of the system, and n is the number of snapshots. Each column of the matrix
A represents a snapshot of the system state at a given parameter value.

• U ∈ Rm×m is an orthonormal matrix, whose columns are left singular vectors contain-
ing the dominant spatial modes.

• Σ ∈ Rm×n is a diagonal matrix containing singular values ordered in a descending
order of magnitude. Larger singular values indicate more significant modes.

• VT ∈ Rn×n is an orthonormal matrix. The columns of V are right singular vectors
containing the parameter coefficients associated with each snapshot.

Decomposing the snapshot matrix enables the creation of its reduced form, in which
the most significant modes are included. If r modes are selected, the reduced matrix Ar can
be written as

Ar = UrΣrVT
r (2)

where Ar ∈ Rm×n, Ur ∈ Rm×r, Σr ∈ Rr×r, VT
r ∈ Rr×n.

The dimension of Ar remains m× n, as it still represents the m spatial points or degrees
of freedom and n snapshots, but its rank is reduced from min(m, n) to r, preserving the
most important features of the original data. The POD-reduced system representation,
given by a state vector y ∈ Rr, can now be obtained by reducing the full-order model x by
using the reduced spatial modes of matrix Ur in the following form:

y = UT
r x (3)

The state of the full-order model from the reduced-order model can be obtained as

x ≈ Ury (4)

where the closer the model approximates the original state, the more the selected modes r
capture the dominant features of the system.

The key characteristic of the POD method is that reduced modes are obtained by nu-
merical or experimental data snapshots, and it can be fruitfully combined with parametric
CAE models ready to create as many snapshots as required to properly train the ROM. The
described approach leads to the creation of a ROM that preserves essential system charac-
teristics and high accuracy of the model while significantly reducing the dimensionality of
the system representation, with significant advantages in terms of computational time. It is
important to note that while ROM evaluation can provide results in very short times (up to
real time, with frame rates fast enough for interaction in VR), ROM construction requires a
series of full simulations or experimental data collection.

2.2. RBF Mesh Morphing

Mesh morphing is a computational technique widely used in computer graphics,
computational fluid dynamics, and finite element analysis [28,29]. It enables efficient
adjustments to computational grids or meshes to account for shape variations in the
underlying geometry, avoiding the need to regenerate meshes from scratch. Mesh morphing
uses parametric displacements to deform the original mesh rather than generating a new
mesh from scratch. Compared to traditional workflows, where shape parameters are
defined in CAD geometries, mesh morphing offers two major advantages: it preserves mesh
quality and significantly reduces computational time, particularly in shape optimization
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workflows like the design of experiments. Mesh morphing aims to maintain mesh quality
and topology while adapting to variations in the shape or configurations of the simulated
object. The preservation of mesh topology is especially critical for developing reduced-
order models (ROMs), as it ensures consistency in node definitions across configurations.
This technique has been successfully applied in diverse fields, including marine CFD
optimization [30], motorsport aerodynamics [31], and biomedical modeling [32].

In this study, mesh morphing is implemented using radial basis functions (RBFs).
RBFs are a mathematical tool used to interpolate a scalar function defined in discrete points
(called source points) to a full domain space [29]. The interpolation function s(x) consists of
a radial basis and a polynomial term and is defined as

s(x) =
N

∑
i=1

γiϕ(x − xsi) + h(x) (5)

where N is the number of source points; γi are the function weights; ϕ(||x − xsi||) is the
radial function; x is the generic point position; xsi is the source point position; h(x) is a
polynomial term with a degree dependent on the chosen radial function. In the case of a
three-dimensional deformation field, as in space morphing, each displacement component
is interpolated individually:

sx(x) =
N
∑

i=1
γx

i ϕ(x − xsi) + βx
1 + βx

2x + βx
3y + βx

4z

sy(x) =
N
∑

i=1
γ

y
i ϕ(x − xsi) + β

y
1 + β

y
2x + β

y
3y + β

y
4z

sz(x) =
N
∑

i=1
γz

i ϕ(x − xsi) + βz
1 + βz

2x + βz
3y + βz

4z

(6)

2.3. Design of Experiments and Response Surface Methodology

Design of experiments (DoE) is a statistical approach used to plan experiments and
analyze the correlation between the input and output variables of a system. The goal of
this methodology is to maximize the gain of information while minimizing the number
of experiments required, thus optimizing the use of resources. In simulations, DoE helps
identify the most influential factors, their interactions, and their effects on outputs [22,33].
DoE methods rely on the sampling strategies, i.e., the way design variations are defined
upfront, and response surface interpolation, i.e., the way the sampled data are retrieved on
new-and-not-seen design configurations. The traditional sampling methods include full
factorial (FF), central composite design (CCD), and Latin hypercube sampling (LHS).

Response surface methodology (RSM) is an extension of DoE that focuses on modeling
output responses determined by a set of input parameters. It involves the use of various
mathematical techniques to model a response surface that approximates the relationship
between the singular values of the inputs and outputs to create a continuous response
over the design space. The main methods used to implement response surfaces are genetic
aggregation [34,35], standard response surface with full second-order polynomials [36],
kriging [37], non-parametric regression [38], sparse grid [39], and radial basis functions [23].

In this study, genetic aggregation (GA) is used to integrate response surfaces to obtain
the genetic aggregation response surface (GARS) method. The GARS method uses genetic
algorithms to determine an optimal combination of multiple response surfaces, ensuring
that the aggregated model captures the essential characteristics of the provided data.
Mathematically, the algorithm can be expressed as follows:

G(x) =
n

∑
i=1

ωiRi(x) (7)

where G(x) is the aggregated response surface; Ri(x) are the individual response surfaces;
and ωi are the optimized weights. The weight values are evaluated by integrating a
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multi-objective genetic algorithm (MOGA) to meet the requirements of the optimization
objective.

2.4. Computational Fluid Dynamics

Computational fluid dynamics (CFD) enables the prediction of fluid flow, heat transfer,
mass transfer, chemical reactions, and related phenomena by solving mathematical equa-
tions that govern these processes through numerical simulations [40]. Most CFD solvers
use the finite volume method and implement turbulence models to represent eddies with a
wide range of lengths and time scales: Reynolds-averaged Navier–Stokes (RANS) models,
large eddy simulation (LES), and direct numerical simulation (DNS). RANS models are
widely used in industry [41], as they offer a good balance between computational efficiency
and the ability to handle complex turbulent flows. Various RANS turbulence models
exist, ranging from simpler one-equation models to complex two-equation models like the
k-ε and k-ω models [42]. In this study, a 3D steady-state RANS approach is used with a
standard K-ε turbulence model. The approach builds on previous studies of bicycle aero-
dynamics [43], highlighting the importance of detailed turbulence modeling, as turbulence
can influence drag resistance by up to 20% [44]. CFD simulations, even under the RANS
simplifications, are numerically intensive and require high-performance computing to solve
the flow in a reasonable time. The computational domains could comprise millions of cells,
and a large amount of memory is required to store the data. Reduced-order models can be
effectively trained using a reasonable amount of data computed by full-order models as
input, which in this study are the CFD simulations.

3. Case Study

The case study aims to optimize the aerodynamics of a cyclist’s time-trial helmet under
conditions typical of a road individual time-trial (ITT) stage, with the cyclist traveling at a
speed of 54 km/h (15 m/s). This comprehensive study involves several steps to achieve
the optimal helmet design. First, the cyclist, bicycle, and helmet geometries are modeled as
detailed in the following sections. The cyclist’s positioning is also accurately implemented
to reflect an ITT stage scenario. Next, a computational fluid dynamics mesh is created,
and an initial analysis is performed on this baseline case to establish a reference point
for subsequent evaluations. Following this, shape parameters are defined on the helmet
geometry to guide the optimization process. Mesh morphing techniques are then applied to
the initial mesh, enabling adjustments in the geometry based on these defined parameters.
To explore the variable space and understand the impact of different helmet shapes, a design
of experiments approach is employed. This method facilitates the systematic variation
of shape parameters and the execution of corresponding CFD analyses. Subsequently, a
response surface methodology is utilized to analyze the results from the DoE and identify
the optimal helmet shape for drag minimization. This approach enables the visualization of
the relationship between helmet shape parameters and aerodynamic performance. Finally,
the deployment of a reduced-order model, combined with mesh morphing, allows real-time
visualization of the aerodynamic and turbulence fields across the parameters’ range. This
integration enhances the understanding of the system by enabling a detailed analysis of
flow behavior, illustrating the distribution and interaction of critical fields across both the
helmet and the cyclist’s body. As a result, this approach significantly improves the design
process and performance evaluation, leading to more informed aerodynamic optimizations.
This case study was implemented using a combination of open-source and commercial
software, as described in the following sections. The proposed workflow can be adapted to
other software platforms or solvers, including open-source alternatives.

3.1. Cyclist Modeling and Positioning

The first part of the study focuses on the modeling and positioning of the cyclist on
the bicycle. A human body model was imported from the DINED anthropometric database
of TU Delft [45] to create the geometric model of the cyclist. This database offers a compre-
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hensive dataset derived from scanning a diverse population, providing detailed physical
characteristics. Several studies and research projects have been conducted to classify hu-
man body models. Among these, the CAESAR project anthropometric database [46,47] was
selected to provide the foundational anthropometric data for this analysis. In developing
the model, a wide range of parameters can be configured. Specifically, an adult male with a
height of 180 cm and a weight of 72 kg was chosen, with other body dimension parameters
set at the 50th percentile, resulting in the mannequin model illustrated in Figure 2.
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The model was articulated into a cycling posture using Blender® 4.2 software, utilizing
its rigging capabilities. Rigging in computer graphics refers to the process of creating
a digital skeleton for a 3D model, allowing it to be animated [48,49]. This skeleton is
composed of “bones” or control structures that enable the model to move in realistic ways,
as already demonstrated in studies across diverse scientific fields [50,51]. The process starts
with the import of the STL file providing the baseline geometry of the standing cyclist.
The skeletal structure, or armature, is created within Blender through the Rigify add-on,
selecting a basic human rig template to approximate the cyclist’s anatomy. The articulation
rig, consisting of 58 bones, is then accurately aligned with the standing cyclist, and the rig
is connected to the cyclist’s geometry through the feature Automatic Weights, which assigns
vertices of the mesh to the nearest bones based on spatial proximity. This initial weight
assignment is further refined through manual weight painting, particularly in regions
subject to complex deformations. In this manner, the influence of each rig bone on the
cyclist’s body can be accurately controlled.

To ensure the correct positioning of the cyclist, the bicycle is added in the modeling sce-
nario. The bicycle’s geometry was modeled using the CAD software Ansys® SpaceClaim®

2024 R1 and is based on a typical design of modern time-trial bikes used in official competi-
tions. The following step of the procedure is the positioning of the cyclist in a riding pose,
considering a stationary condition, with the pedaling motion not simulated. This approach
simplifies the analysis while maintaining a realistic representation of the cycling posture.
The cyclist is positioned on the bicycle from the standing to the riding pose through Blender
rigging features, following the steps illustrated in Figure 3.

The final position is achieved by defining and optimizing multiple key angles crucial
to the cycling posture. With reference to Table 1 and Figure 4, several angles are defined
based on studies from the literature [6,52]: the sagittal torso angle (1), shoulder angle (2),
elbow angle (3), forearm angle (4), right and left hip angle (5,6), right and left knee angle
(7,8), right and left ankle angle (9,10). Following the positioning process, both the bicycle
and cyclist geometries were exported and then smoothed and defeatured to enable efficient
meshing for CFD simulations.
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Figure 3. Cyclist’s positioning on the bicycle through the support articulation geometry.

Table 1. Cyclist posture angle values.

N◦ Posture Angle Value [deg]

1 Sagittal Torso Angle 18.6

2 Shoulder Angle 87.7

3 Elbow Angle 117.8

4 Forearm Angle 6.9

5 Right Hip Angle 76.0

6 Left Hip Angle 61.0

7 Right Knee Angle 56.9

8 Left Knee Angle 57.1

9 Right Ankle Angle 90.2

10 Left Ankle Angle 97.1

The helmet was reconstructed in 3D, based on actual time-trial products. Safety
requirements regarding helmet thickness were considered in both the geometry design
and the selection of shape parameters for optimization. It is important to highlight that
both the bicycle and the helmet are generic models, and their specific characteristics do
not influence the methodology illustrated or its implementation. In this case, the helmet’s
maximum dimensions are 430 mm in length, 190 mm in width, and 220 mm in height.
Figure 5 shows both the side and rear views of the helmet. The entire configuration,
including the cyclist, bicycle, and helmet, occupies a frontal projected area of 0.7036 m². The
described approach for cyclist modeling allows for easily modifying the cyclist’s position
and replacing different types of bicycles or helmets. For instance, while the current case
study focuses on an individual time-trial bicycle, it can be adapted to a standard road
racing bicycle for other types of competitions. This facilitates simulations of various racing
conditions compared to traditional approaches that rely on modeling the geometry by
scanning actual cyclists, bicycles, and helmets [5,6,43,53].
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3.2. Baseline and Morphed Configurations Analysis

The implementation of the cyclist CFD aerodynamic analysis was conducted using
the commercial CFD solver Ansys® Fluent® 2024 R1. A baseline simulation was performed
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to evaluate the aerodynamic properties of the entire assembly, in particular the drag force
and drag coefficient, with a specific focus on the initial helmet geometry. Next, a design of
experiments approach for optimization was implemented by defining the shape parameters
used to modify the helmet through mesh morphing. In the final phase, the optimum
drag force was evaluated through response surface optimization, and a reduced-order
model was created for real-time visualization of the field variables. The simulations were
performed on a workstation with an Intel® Xeon® W-2255 CPU running at 3.70 GHz with
32 GB of RAM, utilizing eight cores for the simulations.

3.2.1. Computational Domain Setup and Meshing

In the CFD analysis for external aerodynamics, it is essential to model not only the
object of interest but also the surrounding computational domain, which represents the
volume where the fluid flow interacts and evolves. This approach is critical for accurately
capturing the flow characteristics and interactions between the object and the fluid. The
computational domain must be sufficiently large to capture the flow dynamics accurately.
Additionally, appropriate boundary conditions must be set to represent the influence of the
fluid behavior around the body.

In this study, a steady RANS analysis is conducted using the K-ε standard turbulence
model with enhanced near-wall treatment. A box-shape computational domain with a
length of 10 m, a width of 3.5 m, and a height of 3 m was created, as visible in Figure 6. The
front face of the domain serves as the inlet, while the back face is the outlet, as highlighted
by the arrows. The foremost part of the bicycle is positioned 3.2 m from the inlet and in
the middle relative to the width of the domain. A symmetry-type boundary condition is
applied to the upper and lateral faces of the computational domain to simulate an open-air
environment. This simplified representation effectively replicates far-field conditions in an
open space rather than the enclosed nature of a wind tunnel. The approach ensures that
edge effects are excluded from the analysis. These symmetry conditions are conceptually
similar to applying a slip condition on a wall, where no friction is considered, and the flow
conditions inside and outside the domain are treated equivalently.
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Figure 6. Computational domain shape (a) and cyclist’s position inside the domain (b).

The computational domain was discretized using a poly-hexacore mesh, consisting of
4,083,840 cells, 20,521,854 faces, and 13,419,531 nodes. The external surfaces of the cyclist,
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helmet, and bicycle were meshed with 173,517 faces, using a surface grid size ranging from
3 mm to 10 mm. The boundary layer mesh, illustrated in Figure 7, was modeled with
16 prism layers, maintaining an average y+ ≈ 1.25, as per similar literature studies [43,54].
The prism layer growing ratio was set to 1.3, with an initial wall-adjacent cell distance
yp = 0.025 mm, and transitioning to a maximum cell size of 80 mm in the coarser regions of
the mesh.
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3.2.2. Baseline Solution

The baseline solution was calculated using the helmet’s initial design without applying
mesh morphing. A uniform velocity of 15 m/s (54 km/h) is imposed at the inlet, while a
relative pressure of 0 Pa is maintained at the outlet. To initialize the case, hybrid initializa-
tion was implemented, and the flow solution converged with approximately 1000 iterations.
The computational setup involved using eight cores with a double precision solver on an
Intel® Xeon® W-2255 CPU running at 3.70 GHz, with 32 GB of RAM. With these settings, a
computational time of approximately 70 min is required for the baseline solution.

3.2.3. Mesh Morphing Setup and Morphed Configurations Solution

Mesh morphing was implemented by using the Ansys® RBF Morph™ Fluids 2024 R1
add-on in Fluent, focusing on modifying the helmet’s front and back areas. In particular,
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four shape modification parameters were defined, as illustrated in Table 2 and Figure 8. The
parameter front x varies the depth of the frontal helmet along the x axis by moving it forward,
while the other three parameters scale x, scale y, and scale z scale the back area of the helmet
along the three coordinates x, y, and z. The morphing parameters were set using the Encaps
feature in RBF Morph, which enables the deformation of a selected volume surrounding
the geometry of interest. The transformation is then carried out through a combination
of translation and scaling operations for the corresponding morphing parameters. The
RBF mesh morphing approach ensures the preservation of mesh quality and topology,
enabling the construction of reduced-order models (ROMs) for real-time visualization,
as highlighted in previous studies [55–57]. This methodology can be implemented using
independent codes by applying the mathematical principles behind RBF mesh morphing
described in [29], providing a robust and adaptable framework for simulations in various
applications.

Table 2. Morphing parameters’ minimum and maximum values (refers to meshes in Figure 8).

Morphing Parameter Minimum Value (Blue) Maximum Value (Red)

front x 0 8

scale x −8 4

scale y −1 5

scale z 0 10
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To generate a simulation dataset by varying the morphing parameters in the specified
range, a DoE with 100 design configurations was implemented. The Latin hypercube
sampling (LHS) technique was used to sample the design space optimally. Only mor-
phing parameters were varied among these configurations, while the inlet velocity and
other settings were maintained as in the baseline solution. Starting from the baseline con-
verged data, approximately 100 additional iterations are required to converge a new mor-
phed configuration, taking approximately 16 min to simulate each new case. Specifically,
8 min is required for mesh morphing, while 8 min is required for the CFD solution and
output export. This results in a total time of 1670 min (almost 28 h, including the baseline
solution), which must be taken into account when considering the two purposes of the
full simulation: identifying a candidate point through response surface optimization and
creating a reduced-order model for real-time visualization.
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3.3. Response Surface Optimization Setup

Response surface methodology (RSM) was implemented to establish a correlation
between the input and output parameters. In particular, the previously defined morphing
parameters (front x, scale x, scale y, and scale z) were used as input parameters, while the drag
force acting on the helmet, as well as the overall drag force acting on the helmet, cyclist, and
bicycle, were selected as output parameters. The GARS method was selected to efficiently
model and optimize the relationship between these variables. The final response surface
model obtained from GARS allows for the identification of optimal morphing parameter
settings that minimize drag, thus potentially improving aerodynamic performance. The
predicted data, derived from the response surface, were compared with the observed data
from full-order model simulations to evaluate the accuracy of the GARS model. This
comparison, as illustrated in Figure 9, highlights the model’s ability to approximate the
aerodynamic behavior with high accuracy.
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Figure 9. Predicted vs. observed normalized drag values.

The sensitivity analysis, as illustrated in Figure 10, provides insights into the impact
of normalized morphing parameters on the drag forces. Local sensitivity curves describe
how variations in the parameters influence drag. For example, the curve for scale x (red)
consistently shows a downward trend, suggesting that increasing scale x reduces the drag
force. Conversely, the curves for front x (blue), scale y (green), and scale z (yellow) exhibit
non-linear behaviors, indicating complex interactions with the drag force that can both
increase and decrease drag depending on the parameter levels.
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3.4. Reduced-Order Model Implementation

The reduced-order model (ROM) was implemented to enhance the real-time visualiza-
tion of critical aerodynamic variables, such as pressure distribution, wall shear stress, and
turbulence intensity. The ROM was created using the POD method within Ansys® Twin
Builder, based on 50 snapshots from full-order CFD simulations, and validated with an
additional set of 50 snapshots.

This approach significantly reduces computational time while maintaining a suffi-
ciently high accuracy. A full-order simulation, including mesh morphing and aerodynamic
analysis for a single configuration, requires approximately 16 min. In contrast, the ROM can
generate results in real time, using 10 selected modes, with a maximum error in the pressure
of approximately 2.5%, corresponding to 1.8 Pa, compared with the full-order model. The
decision to select 10 modes instead of the 15 suggested by the software algorithm was
implemented to reduce the ROM’s computational footprint, facilitating its integration into
virtual and augmented reality applications in mobile devices. Although this reduction
increases the maximum ROM error for pressure from 1% to 2.5%, this was considered
acceptable, given the trade-offs in portability and real-time performance. Table 3 presents
the ROM error evaluation for the first 10 design points in the DoE, where 5 of these were
included in ROM generation, and the remaining 5 were left out for ROM validation.

Table 3. ROM error evaluation for the first 10 design points.

DP Front X Scale X Scale Y Scale Z Selected ROM
Error (%)

1 0 0 0 0 YES 0.313

2 4 −8 −1 5 YES 0.225

3 8 4 5 10 YES 0.285

4 0.522 3.58 1.90 3.49 NO 1.740

5 7.78 3.15 2.67 9.93 NO 1.064

6 0.037 1.32 3.56 2.53 YES 0.319

7 1.95 −5.99 −0.637 8.86 NO 2.131

8 2.28 0.704 4.71 6.56 NO 2.215

9 6.38 1.87 2.14 3.12 YES 0.332

10 4.58 −5.80 3.62 5.61 NO 1.363

By integrating ROM into the design workflow, significant computational savings are
achieved without compromising the accuracy of aerodynamic predictions. This enables the
design team to efficiently explore and refine various helmet geometries, with subsequent
validations to be performed on a few selected designs. Additionally, the reduction in
computational demands supports broader design space exploration, including potential
future extensions to more complex configurations, such as the inclusion of the cyclist
position and bicycle geometry, facilitating comprehensive aerodynamic analyses.

4. Results
4.1. Response Surface Optimization

The application of response surface optimization (RSO) led to the minimization of
drag force at a designated candidate point. To better understand the influence of each
parameter on the drag force, a series of response surfaces were plotted, as shown in
Figure 11. These surfaces were analyzed to observe the behavior of the drag force with
individual parameters, facilitating a detailed analysis of their respective effects.
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Given that the optimization involved four parameters (front x, scale x, scale y, and
scale z), six response surfaces in a three-dimensional space were plotted to capture the
relationships between each pair of parameters (Figure 11a–f). This systematic approach
allowed for a clear visualization of how changes in one parameter influence drag in
conjunction with others. The use of response surfaces provided valuable insights into
parameter sensitivities and interactions, leading to a final optimization characterized by
the respective values of 6.40, 3.99, 1.85, and 3.89 for the parameters front x, scale x, scale y,
and scale z, respectively. The optimization of the helmet’s shape yielded a 10.22% reduction
in the drag force acting on the helmet and a 0.25% reduction in the total drag force.

4.2. Reduced-Order Model

RSO focused on optimizing an individual parameter, specifically the overall drag force
on the cyclist. However, the use of a ROM offers a more comprehensive understanding
of the system’s aerodynamics. Figures 12–14 highlight how the cyclist’s ROM facilitates
real-time visualization of three field quantities—static pressure, turbulence intensity, and
wall shear stress—for baseline and optimized helmet configurations. Once the ROM is
loaded within a visualization tool, the input parameters are associated with adjustable
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sliders, which allow changing each input parameter within its validity range. Each action
on the sliders is followed by a refresh of the visualization, consisting of a shape change
(based on the ROM of the mesh) and of the displayed output color map (based on the ROM
of the current output). Such refresh occurs almost in real time, allowing a quick inspection
of the effect of combined input parameters.
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By analyzing these fields, the cyclist’s aerodynamics can be better understood, pro-
viding clear guidance on how to optimize performance. Notably, the results show that
turbulence intensity and wall shear stress in particular (as visible in Figures 13 and 14) vary
not only on the helmet but also on the cyclist’s back and legs, where significant aerody-
namic interactions occur, with lower values being observed when the optimized helmet
shape is investigated. As observed in previous draft cycling studies [53], reducing both the
overpressure on the cyclist’s front and the lower pressure on the back plays a crucial role in
minimizing drag.
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5. Conclusions

In this study, a comprehensive methodology was developed and implemented for
optimizing the aerodynamics of a cyclist’s helmet for time-trial competitions, leveraging
advanced techniques, such as response surface methodology (RSM) and reduced-order
models (ROMs). The approach focused on improving helmet design to reduce aerodynamic
drag for enhancing performance during time-trial events.

The first step of the process involved the implementation of the cyclist, helmet, and
bicycle geometries, with careful attention to the cyclist’s posture and positioning to simulate
typical individual time-trial conditions. Mesh morphing techniques were applied to enable
flexible, parametric modification of the helmet’s geometry, optimizing it for aerodynamic
performance while maintaining adherence to safety standards. Through the DoE and
RSM, the impact of individual shape parameters on aerodynamic drag was explored. This
facilitated the identification of optimal configurations, where significant drag reductions
were achieved both for the helmet itself and for the overall cyclist–helmet system. The
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RSM provided valuable insights into the relationship between helmet geometry and aero-
dynamic resistance, allowing for a systematic approach to design refinement. The use of
ROMs further enhanced the optimization process by providing real-time assessments of
aerodynamic variables, such as pressure distribution, wall shear stress, and turbulence
intensity. The ROM enabled a rapid evaluation of the design modifications, significantly
reducing computational costs and improving the feasibility of real-time design iteration.
Notably, the analysis highlighted that aerodynamic effects, particularly turbulence intensity
and wall shear stress, do not only concentrate on the helmet but also influence the cyclist’s
back and legs. This underscores the importance of considering the interaction between the
helmet and the entire body of the cyclist when optimizing for drag reduction.

A range of opportunities for future research and development present themselves
upon the foundation laid by this study. The implementation of three-dimensional aerody-
namic fields, such as velocity, in the ROM would allow for a more detailed investigation of
the effects of different cyclist postures and bicycle geometries, combining geometry modi-
fications with morphing techniques to refine overall aerodynamics. Additional attention
could be given to exploring further shape parameters, particularly on the front and side
areas of the helmet, as well as the cyclist’s bicycle, to enhance performance even more.
Another critical step would involve verifying the simulation results through experimental
data obtained from pressure sensors placed on the cyclist’s body and the bicycle. Integrat-
ing these sensor data into the ROM would likely increase the accuracy of the simulations,
offering a more personalized optimization. Moreover, customization of the helmet interior,
using a 3D scan of the cyclist’s head, could provide a perfect fit, thereby improving both
comfort and safety. Finally, integrating the aerodynamic model into virtual and augmented
reality platforms would enable enhanced visualization of aerodynamic fields and real-time
analysis on wearable devices.
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Abbreviations

CAD Computer-Aided Design
CCD Central Composite Design
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
DoE Design of Experiments
DoF Degree of Freedom
FF Full Factorial
GA Genetic Aggregation
GARS Genetic Aggregation Response Surface
ITT Individual Time Trial
LES Large Eddy Simulation
LHS Latin Hypercube Sampling
L-S Lyapunov–Schmidt
MOGA Multi-Objective Genetic Algorithm
MOR Model Order Reduction
PCA Principal Component Analysis
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RANS Reynolds-Averaged Navier–Stokes
RBF Radial Basis Function
ROM Reduced-Order Model
RSM Response Surface Methodology
RSO Response Surface Optimization
SVD Singular Value Decomposition
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