

RBF Morph

Enabling Medical Digital Twin through Advanced Mesh Morphing and High-Fidelity Patient-Specific Simulations

Marco Evangelos Biancolini Company founder @RBF Associate Professor @UTV

- RBF Morph makes the CAE model parametric
- Shape parameters are driven by an orchestrator
- Shape parameters can be used to generate snapshots for real time Digital Twins (ROM/AI)

- Geometric control by Radial Basis Functions mesh Morphing
 - o Surface shape changes
 - o Volume mesh adaption
- A new shape of the CAE model ready to run
 - o for structures in the FEA solver
 - o for flows in the CFD solver

We offer Radial Basis
Functions (RBF) to drive mesh
morphing (smoothing) from a
list of source points and their
displacements

 RBF are recognized to be one of the best mathematical tool for mesh morphing

$$\begin{cases} s_{x}(x) = \sum_{i=1}^{N} \gamma_{i}^{x} \varphi(\|x - x_{s_{i}}\|) + \beta_{1}^{x} + \beta_{2}^{x} x + \beta_{3}^{x} y + \beta_{4}^{x} z \\ s_{y}(x) = \sum_{i=1}^{N} \gamma_{i}^{y} \varphi(\|x - x_{s_{i}}\|) + \beta_{1}^{y} + \beta_{2}^{y} x + \beta_{3}^{y} y + \beta_{4}^{y} z \\ s_{z}(x) = \sum_{i=1}^{N} \gamma_{i}^{z} \varphi(\|x - x_{s_{i}}\|) + \beta_{1}^{z} + \beta_{2}^{z} x + \beta_{3}^{z} y + \beta_{4}^{z} z \end{cases}$$

Main uses of RBF Morph

Automated and quick variable design space exploration.	✓	✓		
Optimization (Single physics or multi-physics). Shape optimization for stress reduction, mass reduction, fluid-structure interaction	\checkmark	✓	✓	
Digital twin development (static ROMs)	✓	✓	✓	✓
Lifing applications Simulate defects such as corrosion pits, spalling of material, erosion, chips, etc.	✓	✓		
Examine the effects of non-conformance and manufacturing variability	\checkmark	✓		
Robust Design	\checkmark	✓	✓	

Applications 🖚 🦈 🛍 🍱

EU-funded research projects

MeDiTATe Endovascular Abdominal Aneurysm Repair

MeDiTATe Endovascular MeDitATe Endovascular Abdominal Aneurysm Repair

Medical Digital Twin Copernicus

4 EuroHPC

INPUT: MEDICAL DATA

OUTPUT: RESULTS FOR DECISION SUPPORT

Medical Digital Twin Copernicus

Medical Digital Twin Copernicus

From lung scan to medical use

1) Scan of lungs

2) Extraction of lung shape parameters

3) Digital twin

4) Visualization and interpretation for medical use

- Base geometry is obtained from literature
 - ✓ Constructed from several high-resolution CT scans of 47 year old healthy volunteer
 - ✓ The base geometry has been studied in multiple experimental and numerical studies
 - ✓ Includes up to the 4th generation (note, human lungs go up to 23 generations)
- Identify relevant input parameters for the digital twin
 - ✓ Shape
 - ✓ Flow
 - ✓ Particle

- Z. Zhang, C. Kleinstreuer and S. Hyun, "Size-change and deposition of conventional and composite cigarette smoke particles during inhalation in a subject-specific airway model," *Journal of Aerosal Science*, vol. 46, pp. 34-52, 2012.
- S. Kenjereš and J. L. Tjin, "Numerical simulations of targeted delivery of magnetic drug aerosols in the human upper and central respiratory system: a validation study," *Royal Society Open Science*, vol. 4, no. 12, p. 170873, 2017.

SINULATION UDRUD 2024

- Potentially a huge amount of shape parameters!
- Amount of input parameters is limited by assuming:
 - ✓ Circularity is kept constant
 - ✓ Only considered angle is the branching angle.
 - ✓ Diameter follows a fixed ratio 6 of h=0.79
- Mouth-throat part: 3 parameters
- Lower airways: 23 parameters
 - ✓ Generation 0 (trachea): 1L, 1D, 1A
 - ✓ Generation 1: 2L, 2A
 - ✓ Generation 2: 4L, 4A
 - Generation 3: 8L

T. Van de Moortele et al.; "Morphological and functional properties of the conducting human airways investigated by in vivo computed tomography and in vitro MRI"

	Diameter	Length [n	Branching	
Generation	[mm]	Left	Right	angle [deg]
0 (Trachea)	15 - 20	100 - 120		80 - 95
1		51 - 57	24 - 28	75 - 90
2		12 - 16	15 - 28	65 - 95
3		7 - 10	7 - 10	55 - 70

https://www.flickr.com/photos/aceofknaves/25604600281,

Physical parameters: 3 parameter

- ✓ Flow rate varies between 15 L/min and 120 L/min
- ✓ Particle size varies between 0.1 µm and 10 µm
- ✓ Particle injection rate varies between 0 m/s and 10 m/s

26 shape parameters and 3 physical parameter

29 input parameters in total

05 March 2024

- Design Of Experiments (DOE) table is generated:
 - ✓ For the 29 input parameters
 - ✓ Using the Latin Hypercube Sampling for optimal spacing
 - ✓ Creating 1000 design points
- Fluent settings validated in literature
 - ✓ Steady state
 - ✓ RANS, transitional SST (4eq)
 - ✓ Particles are one-way coupled

Ansys RBF Morph products

- An RBF mesh morphing solution fully embedded in Ansys
 - o RBF Morph Fluids an Add On for Fluent
 - o RBF Morph Structures an ACT App for Mechanical
- Full integration with optiSLang and Twin Builder
- Support for LS-DYNA and APDL

https://www.rbf-morph.com/wp-content/uploads/2023/05/RBFMorph_Brochure.pdf

New RBF Morph Stand Alone

- To be released in 2024
- Read in STL, STEP
- Unity OpenCascade
- Solver independent process that supports many mesh formats
- Scriptable via python

Next step?

A complete solution to deliver interactive digital twins with AR/VR custom UI

SINULATION WORLD 2024

- FMU are translated to ARM
- Meta Quest 3
- Input parameters are controlled by hands

Conclusions

- GRUPPO TIM
- Medical Digital Twins are feasible today!
- The In Silico path, i.e. MDT driven by high fidelity simulations, is ready and requires
 - o Patient specific data (from images)
 - o State of the art multi-physics simulation
 - o Reduced order models and advanced mesh morphing
 - Meta
- A clear **business model** is required
 - o Public funds are today the major resource
 - o Certification is complex
- We are moving in the right direction and there is **mainstream focus** on Medical Digital Twins

RBF Morph - www.rbf-morph.com

marco.biancolini@rbf-morph.com

linkedin.com/company/rbf-morph

youtube.com/user/RbfMorph

rbf-morph.com

