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Summary

In this thesis, some of the fundamental aspects related to the implementation
of a Digital Twin of the thoracic aorta for the study of ascending aortic aneurysms
have been addressed. The work is motivated by the ongoing demand for digital
solutions capable of rapidly extracting biomarkers for the accurate diagnosis and
prognosis of this pathology. The current guidelines for the ascending aortic aneurysm
treatment recommend surgery mainly according to the maximum diameter value.
This criterion has already proven to be often inefficient in identifying patients at
high risk of aneurysm growth and rupture.

A fundamental requirement of a Digital Twin is its ability to follow a system over
time. Moreover, a virtual model reproducing a physical system should be capable
of predicting its evolution and future state. Consequently, in creating a replica of
a pathological organ such as an aorta with an aneurysm, the possible evolution
of the disease over the years and the subsequent growth of the vessel should be
considered. However, ascending aortic aneurysm growth prediction is still challenging
in clinics. In this context, the first portion of this work concerns the determination
of shape features able to improve the prediction of the aneurysm growth. In this
study, we included 70 patients with aneurysm, for which at least two longitudinal
3D acquisitions were available. We exploited these data to compute the growth
rate and evaluate the evolution of the disease. From the first acquisition of each
patient, a set of local shape features (computed directly from each aortic geometry)
and a collection of global shape features (derived from the entire dataset using
mathematical reduction techniques) were extracted. The correlation between local
shape features and growth rate has been investigated. After, the dataset was divided
into two classes according to the growth rate value: all patients with growth rate
not exceeding 3 mm/year, risk threshold identified in the clinical guidelines, were
part of the low-risk group. The remaining were part of the high-risk group due to
rapid growth. The local shape features were first employed to assess the ascending
aortic aneurysm risk of growth. To this aim, we used six different classifiers with
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Summary

input data exclusively from the first exam to predict the class to which each patient
belonged. A first classification was performed using only the maximum diameter
and a second with all the local shape features together. The performances have been
evaluated by computing accuracy, sensitivity, specificity, area under the receiver
operating characteristic curve and positive (negative) likelihood ratio. Subsequently,
iso-topological surface meshes were created using radial basis function mesh morphing.
Statistical shape analysis was performed and global shape features were identified.
At this point, all the shape features were used and compared to directly infer the
aneurysm growth rate. Three different regression models were set and compared for
growth rate prediction based on local and global shape features.

In predicting the risk of growth, the classifiers based on local shape features
outperformed the same ones based only on the maximum diameter. Globally, the
classifiers based on local shape features outperformed the corresponding classifiers
based on the maximum diameter alone. Among the local shape features-based
classifiers, relatively good results in terms of accuracy (90%), sensitivity (77.8%),
specificity (91.8%), area under the receiver operating characteristic curve (0.83),
positive (9.5) and negative (0.24) likelihood ratio were returned by support vector
machine. For the direct prediction of the growth rate, the prediction root mean
square error from leave-one-out cross-validation went from 0.112 mm/month for
local shape features to 0.066 mm/month when using global shape features. In
general, aneurysms close to the root with a large initial diameter reported faster
growth. This demonstrates how automatic shape feature detection combined with
risk classification criteria could be crucial in planning the follow-up for patients with
ascending aortic aneurysms and might provide a crucial contribution for predicting
the aneurysm growth and rupture. Moreover, this information is essential in enabling
the Digital Twin to dynamically adapt its anatomical representation over time and
make predictions about potential long-term clinical outcomes.

A second issue that we addressed in this research concerns the generation of
a high-fidelity model that should serve as foundation of an accurate Digital Twin
in reproducing the kinematics of a real aorta. It ensures that predictions closely
mirror real-world physiological responses, enabling effective treatment planning and
personalized simulations. In this regard, we proposed a procedure for calibrating
4 parameters governing the mechanical boundary conditions of a thoracic aorta
model derived from one patient with ascending aortic aneurysm. The boundary
conditions reproduced the visco-elastic structural support provided by the soft tissue
and the spine and allowed for the inclusion of the heart motion effect. The thoracic
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aorta was first segmented from magnetic resonance imaging (MRI) angiography and
the annulus motion derived by tracking it from 2D cine-MRI. A rigid-wall fluid-
dynamic simulation was performed to extract the time-varying wall pressure field.
We built a Finite Element Model considering patient-specific material properties
and imposing the derived pressure field and the motion at the annulus boundary.
The calibration, which involved the zero-pressure state computation to include
the pre-stress, was based on purely structural simulations. After obtaining the
vessel boundaries by segmenting the cine-MRI sequences, an iterative procedure was
performed to minimize the distance between them and the corresponding boundaries
derived from the deformed structural model. A strongly-coupled fluid-structure
interaction analysis through a partitioned resolution penalty-coupling method was
finally performed with the tuned parameters and compared to the purely structural
simulations.

The calibration with structural simulations allowed to reduce maximum and mean
distances between image-derived and simulation-derived boundaries from 8.64 mm
to 6.37 mm and from 2.24 mm to 1.83 mm, respectively. The maximum root mean
square error between the deformed structural and fluid-structure interaction surface
meshes was 0.19 mm. This procedure could prove crucial for increasing the Digital
Twin fidelity in replicating the real aortic root kinematics. Moreover, enhanced
accuracy in replicating the patient-specific behaviour potentially results in a derived
virtual replica more accurate in evaluating stress and strain at the wall. This, in turn,
increases the precision of the model when assessing the risk of rupture associated
with conditions such as ascending aortic aneurysm or dissection.

An active Digital Twin, both for a physical system and a biological one, should
provide real-time responses when queried. This is one of the fundamental aspects that
should be considered when building an advanced Digital Twin suitable for clinical use,
where available time is often extremely limited. In this thesis, we propose a method to
create and validate three-dimensional surrogate models of the thoracic aorta capable
of predicting almost in real-time patient-specific hemodynamics. The aortic anatomy
has been automatically extracted from the systolic phase of 4D flow MRI sequences
using a 3D U-net architecture. A rigid registration algorithm was used to align
all the shapes of the available dataset to an initial meshed template. Radial basis
function mesh morphing was performed to obtain computationally iso-topological
and anatomically corresponding grids. The set of shapes obtained was then used to
build a statistical shape model from which aortic atlases used to reproduce a huge
cohort of virtual patients were extracted. For every virtual model, computational
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fluid-dynamics simulation was performed and results in terms of wall pressure and
shear stress magnitude were stored. Using non-intrusive model order reduction
techniques based on proper orthogonal decomposition, surrogate 3D models were
built to predict the wall pressure and shear stress results in real-time. The surrogate
models were subsequently converted into Functional Mock-up Units and imported
in the segmentation environment. This allowed for managing a single complete
framework where a user could rapidly transition from medical images to the results of
numerical simulation in order to immediately assess patient-specific hemodynamics.
A validation approach conducted by excluding every time one original real patient
from the creation of the statistical shape model and subsequently attempting to
represent its hemodynamics using data derived from the remaining patients has been
executed.

With a maximum absolute error of approximately 10 mmHg only for a few
patients and since such values were exclusively attributable to a small number of
nodes, considering, in addition, an average relative prediction error of 1.3%, the
surrogate model related to the pressure demonstrated reasonably good capabilities
in predicting this output. On the other hand, errors up to 55 Pa were detected for
the wall shear stress magnitude. These were quite high, especially if observing an
average relative error equal to 42%. Therefore, the surrogate model pertaining to
the wall shear did not prove to be accurate enough to predict this outcome. This
was because the wall shear stress at peak systole exhibited high spatial gradients
on the aortic surface that the ROM was not able to replicate. This work describes
a pipeline to successfully augment medical images with simulation data, but the
results have demonstrated how estimating certain outputs strongly linked to local
flow phenomena still pose challenges for a Digital Twin aimed at providing accurate
and reliable real-time results.

Keywords: Digital Twin, Ascending Aortic Aneurysm, Risk Assessment, Growth
Prediction, High-fidelity Modeling, Reduced Order Modeling, Real-time Simulation
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Organization of the work

This thesis is structured as follows: Part I, comprising Chapters 1 and 2, concerns
the introduction about the clinical and computational problems related to the
ascending aortic aneurysm. Part II, encompassing Chapters 3, 4 and 5, showcases
the development of all the methodologies for the development of shape-based growth
prediction methods, for the establishment of high-fidelity reliable computational
models and for predicting in real-time clinical outcomes derived from numerical
simulation. Part III contains the results obtained in this work related to the methods
previously mentioned and encompasses Chapters 6, 7 and 8. Lastly, Part IV includes
Chapter 9, which consists of the general conclusions drawn from the entire research
described here.

More in detail, the content of each chapter is organized as follows:

• In Chapter 1, we introduce the cardiovascular system and the clinical problem
concerning the ascending aortic aneurysm, highlighting the related risk and
the possible complications. We explain the use of the diameter as criterion
for surgical intervention and then discuss the available therapeutic methods.
We provide a brief excursus of the current diagnostic imaging techniques and
conclude the chapter by discussing clinical challenges related to this pathology.

• In Chapter 2, we describe the use of numerical modeling tools for the analysis of
the aortic aneurysm. We mainly focus on computer-aided engineering methods
for anatomical analysis, as well as numerical simulation techniques for evaluating
biomechanical and hemodynamic properties. We then introduce the concept of
‘Digital Twin’ in relation to the new techniques driven by artificial intelligence.
We conclude the chapter by discussing the computational challenges related to
the modeling of this particular anatomical and pathological condition.

• A primary challenge in developing a Digital Twin for an organ like the aorta lies
in finding methods to track and follow the evolution of the specific anatomical
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region over the months and predict potentially dangerous situations for a specific
patient. In this context, in Chapter 3, we illustrate some methodologies
for predicting the risk of rapid growth associated with patient-specific aortic
anatomies and we present a shape-based approach for predicting the growth
rate of the aneurysm.

• In Chapter 4, we delve into high-fidelity modeling, which sets the foundation for
the development of accurate digital replicas of organs, including their behaviour.
Specifically, we detail methods for calibrating the parameters governing the
mechanical boundary conditions of a thoracic aorta model, including the patient-
specific material properties, accounting for the calculation of wall pre-stress, the
effect of the cardiac motion imposed at the annulus level and the interaction of
the aorta with the spine and the soft tissue.

• In Chapter 5, we delve into another crucial aspect for the realization of a
Digital Twin: the assessment of the results in real-time. To predict patient-
specific hemodynamics, by combining statistical shape modeling and model order
reduction techniques, we propose an approach to create and validate surrogate
3D models reproducing aortas affected by ascending aortic aneurysms. The
meta-models are adaptable to a wide range of patients’ anatomies obtainable by
automatic segmentation procedures and can represent multiple fluid-dynamic
inlet and outlet conditions depending on the desired input parameters. The
deployment methods in an augmented reality environment easily navigable by
the clinicians have been described.

• Chapter 6 is the first chapter presenting the results of the work. Specifically,
the findings about growth prediction methods described in Chapter 3 are
presented and discussed, comparing the prediction results derived from local
shape features such as diameter or the ratio of known lengths derived from
the ascending aorta anatomy with those derived from global shape features
represented by the shape modes extracted through principal component analysis
or partial least squares.

• Chapter 7 examines the results of calibrating the mechanical boundary condi-
tions of the patient-specific high-fidelity aortic model discussed in Chapter 4.
The results have been evaluated by comparing the displacement of the simulated
model with the displacement of the real aorta derived from the images. Once
the boundary condition parameters have been obtained from the calibration,
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the results of a purely structural model and a fluid-structure interaction model
have been compared, and the effect of cardiac motion on wall strain have been
assessed.

• In Chapter 8, we propose and discuss the outcomes of surrogate-based modeling
for real-time hemodynamics assessment proposed in Chapter 5. We describe, in
particular, the validation results related to wall pressure and wall shear stress
magnitude achieved through a leave-one-patient-out approach and we discuss
the limitations, especially related to the computational complexity required to
obtain robust and accurate reduced order models for creating valuable Digital
Twins.

• Finally, Chapter 9 consists of a comprehensive critical analysis of the complete
research, emphasizing the significant achievements reached while highlighting
the remaining challenges and limitations associated with creating a Digital
Twin of a highly complex organ like the aorta.
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Chapter 1

The clinical problem

This introductory chapter provides an anatomical and physiological description
of the cardiovascular system with a major focus on the aorta and the clinical context
related to one of the most common cardiovascular diseases: the ascending aortic
aneurysm. The spread of this pathology is outlined along with its underlying
etiology. The complications that this disease can cause are described and the surgical
interventions and treatment options available are detailed. Finally, the clinical
challenges related to this condition are explored, focusing specifically on the diameter
assessment to access surgery, which still remains a decision-making criterion of
considerable debate.

1.1 The cardiovascular system

The cardiovascular system (CVS) is a complex structure comprising blood, ves-
sels and the heart [1]. The blood supplies essential nutrients and oxygen to the
body’s tissues while concurrently facilitating the removal of waste products such
as carbon dioxide [2]. This exchange occurs through a complex network of vessels
interconnecting all body organs. Blood transport has the additional purposes of
regulating the body temperature, transporting the cells responsible for the immune
response and maintaining the fluid balance in the body.

The circulatory system (Figure 1.1) can be divided into two main parts: (1) the
pulmonary circulation, which concerns the blood oxygenation through the lungs and
(2) the systemic circulation, which involves the distribution of the blood to the rest of
the body. The heart acts as a vital link between these two parts, pumping blood from
one to the other. The whole blood circulation, discovered by Harvey in 1628, can be
briefly described as follows [3]: the circulatory process starts with the reception of
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Figure 1.1: The circulatory system. From www.stock.adobe.com.

deoxygenated blood by the right atrium. The second step is the contraction of the
atrium chamber, that allows the blood to be pushed into the right ventricle. The right
ventricle, in turn, transfers the deoxygenated blood through the pulmonary valve
into the pulmonary artery, allowing the transport to the lungs for oxygenation. The
blood, now rich in oxygen, is then directed back to the heart through the pulmonary
veins. Once filled, the left atrium undergoes contraction, pushing the blood into the
left ventricle. The left ventricle executes a forceful contraction, ejecting the blood
through the aortic valve into the aorta that distributes it to the rest of the body.
Lastly, oxygen-poor blood returns to the heart and the process repeats in a new
cycle to sustain the body’s circulation [4].

The series of events constituting one complete heart contraction is called cardiac
cycle. It comprises two phases: systole and diastole [5]. Regarding the ventricles,
which are the heart’s lower chambers, systole involves the contraction of both left and
right ventricles, forcing blood into the aorta and pulmonary artery, respectively [6].
During atrial systole, which occurs earlier in the cardiac cycle, the atria (the heart’s
upper chambers) contract to push the remaining blood into the ventricles. During

3



1.2 The aorta The clinical problem

diastole, the heart muscles relax, allowing the blood to fill the heart’s chambers.
Ventricular diastole involves the relaxation of the ventricles, enabling them to fill
with blood coming from the atria. Similarly, during atrial diastole, the atria relax
and receive blood from the veins, preparing for the next cardiac cycle.

1.2 The aorta

The aorta is the largest artery of the human body. It plays a crucial role in
cardiovascular circulation, serving as the main conduit for oxygenated blood pumped
from the left ventricle of the heart to the rest of the body [7]. The left ventricle
is connected to the aorta through the aortic valve which guarantees unidirectional
blood flow.

Figure 1.2: (A) Representation of the heart, aorta, rib cage and the main vessels of the
cardiovascular system. (B) The aortic anatomy from the aortic root to the iliac bifurcation.

Its structure, composition, and mechanical properties are essential for preserving
blood flow and ensuring efficient distribution of nutrients and oxygen [8]. The thoracic
aorta (TA) arises from the left ventricle at the level of the aortic root (Figure 1.2
(A)) and propagates up to the diaphragm where the abdominal aorta (AA) starts.
The aortic root consists of the Valsalva sinuses, the aortic valve leaflets, the aortic
commissures and the inter-leaflets triangles [9]. The sinuses, namely the right, left,
and non-coronary sinuses, are bulges in the aortic root connected to the three aortic
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valve leaflets and the sino-tubular junction, named based on the coronary arteries
arising from them. The thoracic aorta can be divided into three main segments: the
ascending aorta (AsA), the aortic arch (AAr) and the descending aorta (DA) (Figure
1.2 (B)). From the AsA, the coronary arteries originate. They supply oxygenated
blood to the myocardium. The aortic arch forms a characteristic arch-like shape
and gives off several branches, including the brachiocephalic artery (BCA), the left
common carotid artery (LCCA), and the left left subclavian artery (LSA) [10]. These
branches supply blood to the head, neck, and upper limbs, respectively. A particular
anatomical variation of the aortic arch called "bovine arch" can be detected in some
individuals. It is characterized by the presence of only two major branches arising
from the aortic arch due to an aberrant origin of the left common carotid artery
[11]. The descending thoracic aorta runs along the posterior mediastinum parallel to
the spine [12]. It is located between the lungs and gives off various branches that
supply blood to the organs and tissues of the thoracic region. In healthy adults,
aortic diameters do not usually exceed 40 mm and tend to gradually decrease in size
downstream.

Figure 1.3: The aortic layers.

The inner hollow space or passage of the aorta or more generally of a blood vessel,
where the blood flows, is called lumen. The other part consists of the wall. It is
composed of three main layers: intima, media, and adventitia (Figure 1.3) [13].

• The intima is the innermost part, consisting of a single layer of endothelial cells
that provides a smooth lining for blood flow.
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• The media, the middle layer, is predominantly composed of smooth muscle
cells embedded in an extracellular matrix rich in elastin and collagen fibers [14].
This layer provides strength and elasticity to the aorta, allowing it to expand
during systole and recoil during diastole, contributing to the efficient ejection
of blood from the heart.

• The adventitia, the outermost layer, provides structural support and contains
nerves, blood vessels, and fibroblasts that contribute to maintaining the aortic
wall [15].

Collagen and elastin are the two primary load-bearing proteins in the vessel
wall, each with distinct mechanical properties that contribute to the non-linear
stress-strain behaviour of the arterial wall [16]. While collagen is the most prevalent
protein in humans, it imparts stiffness to blood vessels and other tissues. When
collagen is unloaded, the main mechanical properties are given by elastin. During
life, collagen undergoes a continuous process of synthesis and degradation, whereas
elastin expression is limited to the perinatal period and is not renewed thereafter
[17]. The distribution of elastin and collagen within the aorta is not uniform. In the
ascending aorta, elastin predominates, but moving more distantly, the proportion
of elastin decreases [18]. This is due to the specific biomechanical requirements
and functional demands of each region: the ascending aorta needs to expand to
accommodate the blood volume pulse and then recoil during diastole and has to
dampen the pressure fluctuations, preventing sudden increases in blood pressure
downstream in the arterial system [19].

1.3 The ascending aortic aneurysm

Among cardiovascular diseases, ascending aortic aneurysms (AsAAs) are charac-
terized by localized dilation and weakening of the ascending aorta [20]. By definition,
an aneurysm is a permanent enlargement of more than 50% of the standard diameter
of the aortic lumen [21]. There are two primary types of ascending aortic aneurysms:
fusiform and saccular (Figure 1.4) [22]. Fusiform AsAAs involve a uniform dilation
of the entire circumference of the aortic wall, resulting in tubular-shaped aneurysms.
This type of aneurysm typically extends along a significant length of the ascending
aorta. On the other hand, saccular aneurysms exhibit a localized outpouching or
sac-like bulge that protrudes from a specific area of the aortic wall. Unlike fusiform
aneurysms, saccular aneurysms are characterized by a more focal and asymmetric
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Figure 1.4: Ascending aortic aneurysms and dissections. From www.cardiosurgeon.co.uk.

enlargement. In the case of a tear of the inner lining of the aorta, which allows the
blood to flow between the aortic layers, a more severe situation defined as aortic
dissection (Figure 1.4) is involved [23]. Even more dangerous is the phenomenon of
the rupture in which the blood flows directly out of the vessel. Rupture shows high
morbidity and mortality if not detected and managed promptly [24].

Several pathomechanisms have been associated with AsAAs, often involving a
combination of factors such as the loss of elastin and smooth muscle cells, thinning
of the tunica media, and infiltration of inflammatory cells [25]. Elastin degradation
is responsible for the aneurysmatic dilatation of the vessel, while experimental
collagenolysis is necessary for rupture to occur [26]. Bicuspid aortic valve (BAV) is
considered one of the main risk factors for developing AsAAs. It is a congenital heart
valve anomaly characterized by the presence of only two cusps instead of the normal
three of a tricuspid aortic valve (TAV) [27]. BAV is the most common congenital
heart defect, detectable in approximately 1-2% of the population [28]. This structural
abnormality can lead to altered blood flow patterns and increased mechanical stress
on the ascending aorta. More details on the causes of ascending aortic aneurysms
are given in the following section.

1.4 Epidemiology and etiology

The epidemiology of ascending aortic aneurysms provides valuable insights into
the prevalence, incidence and demographic characteristics related to this pathology
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[29]. Following the Centers for Disease Control and Prevention data, the estimated
incidence of AsAA is approximately 10 cases per 100,000 person-years [30]. Although
less common than abdominal aortic aneurysms, the pooled incidence of ascending
aortic aneurysms is estimated to be between 3% and 5% in the general population [31].
While both women and men have similar incidences, women tend to be diagnosed
in their 70s, about a decade later than men [32]. The pooled prevalence of AsAA,
resulting from one of the most extensive state-of-the-art review works of 2020, was
0.16% (95% confidence interval: 0.12; 0.20) [31].

AsAA shares many common risk factors with other cardiovascular diseases. Gener-
ally speaking, aortic aneurysms have a multifactorial etiology involving a combination
of genetic and acquired factors [33].

Genetic predisposition plays a significant role, with inherited disorders such as
Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome contributing
to the aneurysm formation [34, 35, 36, 37]. These genetic disorders are characterized
by mutations in genes involved in synthesising and maintaining structural proteins,
such as the fibrillin-1 in Marfan syndrome. As consequence, the disruption of
the structural integrity of the connective tissue occurs, leading to weakened and
dysfunctional aortic walls [38]. The identification of these genetic causes not only
provides insights into the etiology of ascending aortic aneurysms but also highlights
the importance of genetic testing and early diagnosis for individuals at risk of
developing these connective tissue disorders. Approximately 20% of individuals
diagnosed with an aortic aneurysm have a familial history of aortic disease [39]. A
familial predisposition should be investigated for patients who exhibit symptoms at
a relatively young age.

The second aspect that plays a significant role in the development of aortic
aneurysms is related to the acquired risk factors. First, hypertension contributes
to the progressive weakening and dilation of the aortic wall [40]. Atherosclerosis,
characterized by plaque accumulation in the arteries, compromises the structural
integrity of the aortic wall, increasing the risk related to this disease [41]. Cigarette
smoking, through its detrimental effects on vascular health, promotes inflammation
and oxidative stress, accelerating the degenerative process [42, 43]. Advanced age
is also associated with a higher prevalence of aortic aneurysms, likely due to the
cumulative effects of genetic and environmental factors over time [44]. Moreover,
chronic inflammation within the aortic wall, mediated by immune and inflammatory
pathways, further worsens the degenerative process [45]. Abnormalities in the
extracellular matrix components, such as collagen, elastin and proteoglycans or
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deficiencies in vascular smooth muscle cell function and contractility or dysregulation
of matrix metalloproteinases, enzymes involved in extracellular matrix remodeling,
can contribute to the degradation of the wall [46, 47]. Infection-related etiologies,
such as syphilis or bacterial/fungal infections, can directly damage the aortic wall
or induce inflammatory responses leading to aneurysm formation [48]. Trauma or
iatrogenic causes, including surgical procedures, can also lead to aortic wall injury [49].
Finally, it has been demonstrated that hormonal imbalances, such as those affecting
sex hormone production or function, have been implicated in the pathogenesis of
aortic aneurysms [50].

In addition to acquired and genetic factors, hemodynamic stress plays a critical
role in the pathogenesis of ascending aortic aneurysms [51]. Increased wall shear
stress [52] and altered blood flow patterns, particularly in the area of vessel curvature
and branch ostia, contribute to endothelial dysfunction, inflammation, and oxidative
stress within the aortic wall [53]. These pathological processes further weaken
the structural integrity of the aorta, triggering a cascade of events that promotes
aneurysm formation and progression.

The knowledge of all these aspects is essential to study and understand the
activation mechanisms related to this pathology and to develop targeted preventive
strategies and therapeutic interventions to mitigate the risks associated with aortic
aneurysms.

1.5 Complications

The most common complications of aortic aneurysms are aortic dissections and
aortic rupture. Aortic dissection, already introduced before, occurs when there is
a tear in the inner lining of the aorta, allowing blood to flow between the layers
of the vessel wall [54]. This can lead to the formation of a false channel (called
false-lumen) within the aorta, potentially preventing the blood from flowing to vital
organs. If the ascending aortic aneurysm continues to enlarge in an uncontrolled
manner, it can weaken the aortic wall to the point of rupture. An aortic rupture is
a catastrophic event that causes massive internal bleeding and is often fatal if not
promptly treated. The first consequences of rupture can include massive hemorrhage,
cardiac tamponade, and organ ischemia. While the aneurysm may be asymptomatic,
the patient often experiences pain after rupture. When rupture occurs, it is fatal
in a large proportion of patients prior to hospital presentation [55]. Patients who
arrive at the hospital necessitate an urgent surgical intervention associated with a
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mortality risk of around 20% [56].
While not reaching these catastrophic outcomes, other complications can also

occur in presence of aneurysms. Large ascending aortic aneurysms can exert pressure
on adjacent structures, such as the pulmonary artery, coronary arteries or the nearby
heart chambers [57, 58]. This compression can impede blood flow and compromise
the function of these structures, potentially leading to various cardiac complications.
Additionally, the enlargement of the ascending aortic aneurysm may affect the
functioning of the aortic valve, which can lead to valve regurgitation (leaking of
blood backwards) or stenosis (narrowing). This can further strain the heart and, as
a consequence, lead to heart failure [59].

1.6 The treatments

Treatment options for ascending aortic aneurysms can be categorized into con-
servative (non-surgical) and non-conservative (surgical) approaches. Asymptomatic
small aneurysms are often managed with the conservative approach, involving the
regular surveillance described before. For example, maintaining optimal blood pres-
sure levels through lifestyle modifications and medications is essential to reduce
stress on the weakened aortic wall and slow the disease progression [60]. Commonly
used antihypertensive drugs include ACE inhibitors, beta-blockers, calcium channel
blockers and angiotensin receptor blockers (ARBs) [61]. Patients are advised to
make lifestyle changes to support their cardiovascular health. This includes quitting
smoking, adopting a healthy diet low in sodium and saturated fats, engaging in
regular physical activity and carefully managing other risk factors such as cholesterol
levels and diabetes [62, 63].

Given the risk of complications associated with bigger ascending aortic aneurysms,
surgical intervention is often necessary to prevent catastrophic events. The decision
to proceed with prophylactic surgery depends on various factors, including the size of
the aneurysm, the rate of expansion and patient-specific characteristics [29] always
looking for a balance between risk of rupture and risk of intervention. Till 2022,
European and American guidelines recommended surgery for patients with root or
ascending aorta aneurysms (1) in presence of symptoms related to the disease, (2) if
the diameter was higher than 5.5 cm or (3) if there was rapid enlargement of the
wall (aneurysm growth > 3 mm/year) [64]. The threshold for surgery shifted to 5 cm
in presence of bicuspid valve [65]. It was also reasonable to consider surgery already
with a 5 cm threshold when the undergoing tricuspid aortic valve had to be replaced
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Figure 1.5: The open surgery procedure for ascending aortic aneurysm involves accessing
the thoracic aorta through an incision made in the patient’s chest (sternotomy). Once
the aorta is exposed, the surgeon carefully cuts the aorta, removing the portion with the
aneurysm and in some cases the valve, too. A synthetic graft is inserted to replace the
weakened portion of the aorta. After the surgery, the patient typically spends one/two
days in intensive care and usually remains in the hospital for a period from four to seven
days for postoperative care and recovery.

due to pathological conditions such as stenosis, regurgitation or collapse [66]. With
the new guidelines [67], given the decreasing intra and post-operative mortality [68],
a skilled surgeon may consider surgery starting from 5 cm for a standard AsAA or
in patients whose height is more than once the standard deviation above or below
the mean, with a cross-sectional aortic area to height ratio higher than 10 cm2/m or
if a tricuspid aortic valve replacement is required even if the aortic diameter is just
beyond 4.5 cm.

The size criterion can be easily understood by thinking in terms of Laplace’s
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Figure 1.6: Free body diagram of a pressurized vessel with a luminal pressure (Plumen), a
length (L), an inner radius (ri), and a wall thickness (h).

law, which establishes a relationship among the inner radius (ri), luminal pressure
(Plumen), and tensile wall stress (σθθ). It is derived from equilibrium principles,
considering the simplified case of a pressurized vessel free body diagram (Figure 1.6)
where the hemodynamic force due to pressure must balance the elastic force caused
by the tensile stress in the vessel wall. In other words, it ensures an equilibrium
between the forces acting on the vessel to maintain stability:

Plumen2riL− 2σθθhL = 0 ⇔ σθθ = Plumenri

h
(1.1)

The hemodynamic force is determined by projecting the pressure onto an imagi-
nary plane that cuts the cylinder. The stress increase is directly proportional to the
radius, meaning that as the radius grows, the stress also increases. Consequently,
larger diameters pose a higher risk of rupture due to the elevated stress levels within
the vessel wall [69]. However, the aneurysm rupture potential of the Laplace’s law
is inaccurate for two reasons [70]: first, the aortic wall is not a simple cylinder but
has a complex shape with superficial alterations and both major and minor wall
curvatures. Second, the wall stress assessment alone is not sufficient as it does not
consider local properties and material failure [71, 72].

Surgical options include the most common open surgical repair (Figure 1.5) where
a tubular graft is placed performing aortic clamping, with the distal anastomosis
just below the aortic arch but also some minimally invasive endovascular approaches,
such as thoracic endovascular aortic repair (TEVAR) which currently is specifically
aimed at patients for which the risk of open surgery is too high [73, 74]. The artificial
prosthesis, therefore, constitutes the replaced part of the aorta with aneurysm. The
30-days post-surgery mortality rate oscillates between 1.5% and 8% depending on
the clinical centre, age and other well-known cardiovascular risk factors at the time
of operation [75, 76]. Patients who undergo elective surgery for ascending aortic
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aneurysm and survive the postoperative period not only experience long-term survival
but also fully regain their life expectancy [68].

1.7 Diagnoses and monitoring

Accurate diagnosis and long-term surveillance are crucial for an effective man-
agement and prevention of life-threatening complications such as aortic rupture or
dissection. Regular monitoring allows for the detection of any significant changes in
aneurysm size or morphology [77]. Additionally, surveillance allows a prompt treat-
ment of associated risk factors such as hypertension. In fact, by closely monitoring
patients with ascending aortic aneurysms, healthcare providers may rapidly vary
therapies and suggest lifestyle modifications to optimize clinical outcomes and reduce
the risk of adverse events.

In the detection and evaluation of ascending aortic aneurysms, a crucial role is
played by imaging techniques. Several imaging modalities are commonly employed
and each of them brings its own strengths and limitations. Selection should be based
on individual patient characteristics and specific clinical scenarios. These techniques
are often complementary in returning information about the disease [78].

Ultrasounds are generally preferred for abdominal aortic aneurysms (AAAs)
screening. However, in some cases, echocardiography [79], including non-invasive
transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE),
is used for assessing the ascending aortic diameter. Unfortunately, ultrasounds present
limited visualization of the entire ascending aorta for the presence of the ribcage or in
cases of obese patients or with lung diseases that limit the acoustic acquisition window
[80]. In case of TEE, conscious sedation is required and the superior airways must
be absolutely unobstructed if issues arise with the insertion of the probe through the
oral cavities. Moreover, this modality only returns a two-dimensional measurement
and is strictly dependent on the position and angle of the probe, potentially leading
to under or overestimation of the aortic diameter [81].

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) provide
detailed three-dimensional high-contrast anatomical information, allowing for more
accurate measurements of aortic dimensions and assessment of aneurysm progression
over time [82]. CT scans are particularly valuable in assessing the size and morphology
of the aneurysm, identifying associated complications such as dissection or intramural
hematoma. This acquisition is very fast and used in both acute and non-acute
circumstances. However, it requires ionizing radiation and often iodinated contrast
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agents, which may pose risks, especially in patients with impaired renal function
or contrast allergies. Minimizing radiation exposure and optimizing contrast media
injection protocols are essential factors for the future development of this technology.
CT scans can be performed in gating with the electrocardiogram (ECG) to acquire
a specific phase of the cardiac cycle or in multiphase mode over several phases. The
new Photon Counting technologies easily achieve temporal resolutions of 50 ms and
fine spatial resolutions with voxel size equal to 0.25 x 0.25 x 0.25 mm [83, 84].

3D MRI has emerged as a valuable alternative to CT for assessing ascending aortic
aneurysms. It returns excellent soft tissue contrast and allows for detailed evaluation
of aortic morphology, including accurate measurement of aneurysm dimensions,
flow dynamics assessment and aortic wall characterisation [85]. Generally, the
spatial resolution is lower than CT (around 1 x 1 x 1 mm in voxel size). MRI does
not involve ionizing radiation, making it a preferred choice for patients requiring
serial imaging or those with contraindications to contrast agents. However, MRI
is associated with longer acquisition times and can be challenging in patients with
claustrophobia, metallic implants, or arrhythmias. Furthermore, this technique may
not be available in all clinical centers. A cutting-edge non-invasive type of MRI is
the time-resolved 3D phase-contrast (4D flow) that allows the in-vivo assessment of
flow dynamics in both healthy individuals and patients with thoracic aortic diseases
[86]. Through 4D flow MRI, 25 different cardiac phases can be easely extracted.
This modality, which generally has worse spatial resolutions, can potentially enable
the calculation of hemodynamic parameters like the wall shear stress (WSS) through
indirect estimations. However, since it results in averaging the measured velocity field
during several cardiac cycles, it negatively affects the computation of the velocity
gradient at vessel edges and, therefore, the wall shear assessment [87]. Another
dynamic imaging technique that captures 2D images of moving structures, such as
the heart and blood vessels, is cine-MRI. It can provide valuable insights into the
pulsatile behaviour of the aortic wall during the cardiac cycle and helps in assessing
size, shape and the response to the pressure changes due to the blood flow [88].

1.8 The clinical challenges

Despite the advancements in imaging techniques, challenges remain in accurately
detecting and characterizing ascending aortic aneurysms. Early-stage detection and
growth rate prediction for determining the appropriate timing for intervention are
still two of the biggest challenges in this field, as aneurysms are highly variable
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Figure 1.7: Kaplan-Meier plot related to the survival probability of 131 patients with
uncomplicated acute type B aortic dissection: maximum ascending aortic diameter <40.8
mm vs >40.8 mm [89].

in their growth patterns and rates. Besides growth, assessing the risk of rupture
requires considering multiple factors, including the knowledge of wall properties and
several patient-specific characteristics. The diameter assessment is often with a high
degree of uncertainty due to the operator, the quality of the available images and
the various criteria for its determination. Another problem is the insidious ‘small
aorta’ [90]. The formation of aortic dissections at diameters below 5 centimetres
has been discussed several times in the literature [91] and can also be deduced
by observing the Keplan-Meier from [89] in Figure 1.7. In general, there may be
cases where small aneurysms experience rupture while huge aneurysms remain stable
over time, perhaps with only pharmacological treatment [92]. A non-negligible
percentage of ruptures occurs in presence of diameters below 50 mm [93]. Similarly,
aneurysms with a diameter exceeding 70 mm have frequently been reported not to
undergo rupture [94]. The annual risk of severe complications (dissection or rupture)
for ascending aortas with diameters of 4, 5, 6, and 7 cm was estimated of 4.4%,
4.7%, 7.3%, and 12.1%, respectively [95]. On one hand, these numbers show the
risk’s tendency to increase with the diameter. However, on the other, the possible
complications in patients with diameters well below the surgical threshold appear
evident. Consequently, these findings indicate a need for reliable, robust, and precise
risk assessment metrics to address the existing clinical demand. Such metrics will
prove indispensable for aiding clinicians in their clinical diagnoses and decision-making
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processes. Although the quality has improved over the years, medical images still do
not allow detailed estimation of parameters such as wall shear stress and turbulence
phenomena occurring. Managing aneurysms in older patients may require careful
consideration of age-related factors and potential comorbidities. Aneurysms involving
the distal ascending aorta, near the aortic arch or the aortic root, can be particularly
challenging due to the anatomical complexity and superimposition of adjacent
structures [96]. Finally, the patient-specific variability should be considered: each
subject’s response to treatment can vary significantly, requiring tailored approaches
for accurate diagnosis and management.
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Chapter 2

Computational modeling

As mentioned in the previous Chapter, current clinical guidelines for aortic
disease diagnosis and treatment are still associated with a certain level of uncertainty.
This results in an urgent need for more robust risk assessment techniques. In this
Chapter, computational models and their respective applications in the diagnosis of
cardiovascular pathologies are introduced. Particular focus is given to the significance
of extracting vascular anatomical geometry as well as conducting structural, fluid-
dynamic, and fluid-structure interaction simulations to assess clinically relevant
parameters. A step forward is taken with a glimpse of the future roles that artificial
intelligence could have in the diagnosis and prognosis of aortic pathologies. We
introduce the concept of Digital Twins, providing an overview of the origins of virtual
representations, and describe the role of human Digital Twins in healthcare. Finally,
similar to the clinical aspects treated before, all computational challenges related
to the numerical modeling of the aortic aneurysm are discussed. We conclude the
Chapter by presenting the outline and objectives of the thesis.

2.1 The role of computational modeling

The convergence of extensive disease diagnosis information, clinical trial results
and subject health characteristics have paved the way for revolutionary advancements
in the medical practice during the era of big data [97]. For quite a few years,
computational modeling has been established as a fundamental tool in cardiovascular
medicine, offering detailed and personalized insights into the hemodynamic and
biomechanic behaviours of the cardiovascular system [98]. A computational model is
a mathematical representation of a real-world object, system or process, simulated
to analyze and understand its behaviour [99].
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Computer-Aided Engineering (CAE) refers to a set of computational techniques
and simulation tools based on numerical calculation that allows researchers and clini-
cians to analyze complex physiological problems [100]. Through accurate simulations,
CAE methods could contribute to a comprehensive understanding of the underlying
mechanisms of cardiovascular diseases, thereby assisting in improved diagnostics and
personalized treatment strategies. The successful application of CAE methods relies
on integrating multi-modal medical data, including imaging, clinical and genetic
information. These crucial steps significantly enhance the reliability of the considera-
tions derived from the obtained results. By creating patient-specific models based on
individual medical imaging data, clinicians can tailor treatments to a patient’s unique
anatomical and physiological characteristics. This patient-centric approach optimizes
treatment outcomes and minimizes potential complications. These models are created
by defining boundary conditions and numerically solving governing equations in
both fluid and solid domains. The simulations allow for a detailed investigation
of blood flow dynamics, vessel wall mechanics and interactions between blood and
vascular structures under realistic conditions. Considering the potential influences
of wall elasticity, vessel curvature, and residual stress, it is reasonable to suggest
that using patient-specific biomechanical analysis of the aorta through advanced
computer models can enhance the evaluation of mechanical stresses within the aortic
wall beyond what is achievable with the simplified Laplace law. Relating to the
aorta, the process involves generating the anatomical geometry, setting up solid and
fluid models, and, if possible, coupling the solutions through fluid-structure interac-
tion (FSI) methods. From the simulation results, fundamental biomarkers associated
with the aneurysm growth could be identified and extracted [101]. Biomarkers are
measurable indicators that can provide insights into the presence, progression or
severity of the disease [102]. There is no consensus on the gold standard technique
to model the haemodynamics and structure dynamics of the aortic wall. Several
computational techniques, such as the Finite Element Method (FEM), Finit Volume
Method (FVM), Finite Difference Method (FDM) and machine learning (ML) have
been used covering the entire range of numerical approaches, especially computational
solid mechanics (CSM), computational fluid-dynamics (CFD) and FSI [103]. These
three numerical approaches are discussed in the following sections, preceded by some
considerations concerning the importance of extracting the patient-specific geometry.
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2.2 The computational geometry

The aortic geometry often includes irregular shapes, bulges and asymmetric
expansions, making an accurate and reliable diagnosis through traditional two-
dimensional (2D) images definitely tricky. In addition, this diagnosis may be subject
to uncertainty due to factors such as image resolution, slice thickness, image plane
selection and inter-observer variability [104]. Sometimes, valvular or aortic wall
calcifications could exist and their extension is challenging to grasp by exploiting only
the image dataset [105]. In this regard, patient-specific 3D aortic models can be used
to create personalized representations of the individual’s anatomy and biomechanics,
extracting precious information including size, shape and location of the aneurysm.
CT and MRI are the most common medical imaging techniques used to extract
the real geometry. After collecting medical images usually in DICOM (Digital
Imaging and Communications in Medicine) format, 3D patient-specific models can
be reconstructed by performing segmentation [106]. Here, the aortic lumen and,
in the best cases, the wall thickness are extracted separately to differentiate these
zones. The 3D model obtained through segmentation may contain protrusions and
tight internal corners, necessitating the use of additional geometric refinement and
smoothing algorithms to prepare a suitable domain for computational analysis and
effectively discretize it into finite elements [107]. From the 3D anatomical model,
clinicians and researchers can visualize the complex details of the vessel or the
regions close to it, such as the valve area and potential dissection lumens, providing
comprehensive insights into the pathology. The extraction of accurate geometry is
especially crucial for longitudinal analysis, enabling clinicians to accurately track the
evolution of the aneurysm over time. Furthermore, by performing the segmentation
of 2D or 3D plus time datasets, it is possible to extract the dynamic behaviour
of the aorta in several cardiac phases, allowing to study the presence of possible
pathological alterations during the cardiac cycle [108].

2.3 Computational solid mechanics

When studying complex phenomena, structures and systems subjected to a broad
range of loading conditions, including quasi-static and dynamic loads, computational
solid mechanics could be used. In the cardiovascular field, it is mainly based on FEM
and requires solving partial differential equations (PDEs) [109].

The domain of interest, the aortic wall in this case, is typically first discretized
(meshed) into shell or volume elements with specific material properties and then
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loaded, reproducing specific physiological conditions [110]. The equilibrium equations
for each element are then solved by yielding displacements, strains and stresses for
the whole structure. Patient-specific models derived from medical imaging data can
be tested using CSM simulations to predict stress and strain distribution within the
aneurysmal wall [111]. For building a detailed structural model, aortic root motion
and the pre-stress at the wall should be considered, as they definitely influence the
conditions under which rupture occurs [112, 113].

By comparing computational results from aneurysms that ruptured with those
that were electively repaired, researchers have discovered that aneurysm formation is
associated with increased wall stress and decreased wall strength [114]. Furthermore,
studies have shown that the rupture point commonly coincides with locations of
peak wall stress [115]. This information could be fundamental in determining the
potential risk of wall failure and guiding decisions regarding surgical intervention
or conservative management and proves the potentially significant contribution of
computational analysis for optimal prognosis achievements.

2.4 Computational fluid-dynamics

The influence of anatomical variations on hemodynamics should be thoroughly
studied. This examination is crucial for identifying altered flow patterns and critical
flow-related parameters like wall shear stress (WSS). These parameters can be
associated with alterations in aortic size, as shown in [116], may provide valuable
insights into aneurysm development and help assess the risk of dissection, as discussed
in [117]. In this regard, computational fluid-dynamics can be used to solve the
governing equations of fluid mechanics: the continuity and Navier-Stokes equations
[118]. CFD simulations can be exploited to identify regions of disturbed flow, flow
recirculation and areas of elevated wall shear stress, all critical factors contributing to
aneurysm pathogenesis [119]. The blood flow analysis needs a tri-dimensional detailed
vessel geometry and inlet and outlet boundary conditions, which often prove to be one
of the most challenging parts to be accurately set. Outlet boundary conditions can be
established through lumped parameter models, such as the Windkessel model [120].
It describes the behaviour of the distal arterial system in terms of a pressure-flow
relationship using an electrical analogy for fluid flow. To non-invasively quantify
patient-specific in vivo blood velocity profiles from which the boundary conditions for
computational models can be extrapolated, imaging data, especially MRI, could be
used [121]. The primary focus of numerous CFD studies exploiting MRI information
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has been on flow irregularities caused by BAV, one of the most important predisposing
factors for the development of AsAA [122]. Patient-specific models were employed
to reveal distinct hemodynamic patterns in AsAA between patients with BAVs and
those with TAV, also emphasising the importance of the opening angle of the valve
on the direction and impact of the valvular jet [123].

2.5 Fluid-structure interaction analysis

Despite its valuable utility, CFD is limited to exploring disturbed hemodynamics
in the fluid domain without considering the wall compliance effects and the interaction
between pulsatile blood flow and the arterial wall with the volume accumulation
during systole and its release in diastole that may affect the estimation of parameters
such as WSS.

On the other hand, CSM allows for wall stress analysis in the deformable solid
domain but does not take into account the behaviour of blood flow. The mutual
effects between fluid domain and vessel wall should be considered to increase the
accuracy of the results. The majority of recent computational models rely on the
fluid-structure interaction approaches [124, 125], which provide a more realistic
and accurate numerical description and have gained relevance in the past decade
as large computing platforms have become more available and parallel computing
has significantly evolved. Fluid-structure interaction analysis requires simultaneous
and coupled solutions of governing fluid flow and tissue displacement equations.
In this technique, fluid-dynamic forces deform the structural wall and the wall
displacement affects the fluid flow behaviour. FSI simulation has been frequently
used to understand the effect of wall stiffness on flow-derived parameters [126], study
the rheological effects on the hemodynamics within the aneurysm sac [127] and
evaluate the blood flow behaviour in proximity to dissected areas of the thoracic
aorta [128].

2.6 The role of artificial intelligence

Several definitions have been given regarding the concept of artificial intelligence
(AI). The definition here used is ‘a simulation system able to collect and process
knowledge and information in order to take actions maximizing its chance of success’
[129]. In recent years, AI has begun to permeate and boost the field of cardiovascular
medicine. The integration of AI techniques in computational modeling has the
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potential to revolutionize the way cardiovascular diseases are diagnosed and treated
[130]. So far, statistics has been the standard method for engineering and particularly
medical research with the aim of showing the benefit of new therapies, identifying
risk factors and revealing disease mechanisms. On the other hand, AI methods are
not intended to estimate and explain data or information but to directly use them
for making predictions of new unknown details [131].

Machine learning can be defined as a subfield of applied AI (Figure 2.1) with
the capability of automatically discovering patterns of data without using explicit
instructions [132]. It involves several algorithms for prediction and classification
tasks that perform well especially on big data [133]. Machine learning can be divided
into supervised and unsupervised learning. In supervised learning, machine learning
algorithms are trained with labeled data and are adapted or fit to provide an output
for a given task. These models are used to learn latent patterns within data and
use the learned representations to formulate predictions through interpolation or
extrapolation, particularly when a general law is discerned [134]. Most biomedical
applications that rely on machine learning tend to adopt this learning approach. Once
trained, supervised ML models can perform predictions rapidly and with minimal
computational time. On the other side, in unsupervised learning, the inputs for the
ML models are unlabelled data. This kind of learning is generally carried out for
clustering or dimensionality reduction. In clustering, similar data points are grouped
or clustered. In dimensionality reduction, patterns within the provided data are
extracted.

Deep learning (DL) is a subset of supervised machine learning algorithms (Figure
2.1) that employ deep, multi-layered neural networks, initially inspired by the
structure of the human brain [135]. Over the past years, deep learning has gained
significant traction and demonstrated superior performance compared to other
machine learning techniques in diverse domains, including image recognition and
image segmentation of cardiovascular anatomies.

AI techniques can assist in analyzing vast amounts of medical data, including
imaging scans and patient records [136]. A wide range of studies focus on developing
AI-based tools that automatically estimate the diameter of the aorta from medical
images, yielding results similar to those of specialists but with significant reductions
in terms of time [130]. Additionally, a combination of CAE methods and AI tech-
niques seems to be promising in suggesting the most appropriate graft sizing and
personalized stent graft designs [137]. AI-driven CAE methods have the potential to
streamline workflows and further enhance diagnostic accuracy. These approaches can
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Figure 2.1: Artificial intelligence is a field of computer science that enables machine to
replicate human intelligence. Machine learning is a subset of artificial intelligence that
provides the machine with the ability to automatically learn. Deep learning is a subset of
machine learning based on artificial neural networks to model and solve complex problems.

optimize computational processes, reducing the time required for simulations and
analyses. This efficiency is particularly valuable in time-sensitive situations, such as
emergency medical scenarios, where quick decisions are necessary. Clinicians could,
in fact, use CAE simulations combined with AI methods to evaluate the effectiveness
of particular surgical intervention compared to conservative treatments based on
individual patient’s characteristics [138].

2.7 The Digital Twin

In recent years, the development of technology has transformed industries by
seamlessly connecting the physical and virtual realms. Initially rooted in engineer-
ing and manufacturing sectors, Digital Twins (DTs) have transcended traditional
boundaries, finding applications in various fields, including healthcare. This Section
explores the concept of Digital Twin with a particular focus on its potential to
revolutionize healthcare through personalized diagnosis and prognosis.

Digital Twins are virtual representations of physical objects, systems or processes
updated through the exchange of information between the real and virtual domains
[139, 140]. The term ‘Digital Twin’ originated in 2010 by John Vickers in NASA’s 2010
roadmap [141]. The predecessor of the Digital Twin in the medical field was known
as ‘Virtual Physiological Human’ [142]. It refers to a computational representation of
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a human used in medical research, simulations and other applications with a detailed
model of human physiology, anatomy and even behaviour. It can be used to replicate
several scenarios, test medical treatments, study diseases and predict physiological
responses to different stimuli. These digital counterparts leverage historical data
from the physical entity and combine it with the insights from AI models that
have been trained on extensive general data. Through this fusion of historical and
retrospective information and AI knowledge, DTs can be used to predict the future
state of the studied entity. DTs enabled by AI solutions can be exploited to perform
patient-oriented analysis using a continuous feed of data, thereby improving the
clinical accessibility of the results [143, 144]. With the increasing availability of
Big Data, Internet of Things, cloud computing and AI, it is now possible to create
digital representations of human organs to execute real-time monitoring and return
warnings in case of acute dangerous situations [145].

A Digital Twin can assist medical professionals in controlling the health of the
aorta over time. Anomalies or changes in its behaviour could be promptly identified,
potentially aiding in the early diagnosis of diseases like aneurysms or dissections. The
Digital Twin, enabling a personalized approach to the treatment, can provide insights
into the way the organ responds to ageing, drugs and other factors. Medical decisions
can be tailored to individual needs by considering the patient-specific anatomy and
physiology. The possibility to test many combinations of input parameters can ensure
the capability of predicting significant outcomes [146]. This could even help the
medical team understand the behaviour of the aorta following different corrective
surgical treatments. Surgeons and clinicians can use a virtual replica to test various
operations, such as surgical procedures, stent placements or medication strategies,
before applying them to the real patient. A Digital Twin exploits both population
and individual data to develop a replica which optimally supports decision making. It
could help determine the suitability of a medical device or pharmaceutical treatment
for a patient by simulating the device response or the effects of a dosage before a
particular therapy is chosen. By generating synthetic patient data, DTs can also
be valuable educational tools for medical students and professionals to understand
complex anatomical and physiological scenarios. Moreover, the generation of virtual
patients can facilitate the execution of in-silico clinical trials performed to replicate
standard clinical trials on biological models, refine inclusion and exclusion criteria,
test new drugs and reduce experiment times and costs [147].

A Digital Twin can be categorized into active, semi-active and passive [148].
An active DT continuously adapts with real-time physical data to perform system
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monitoring. The parameters of the numerical representation, in this case, are updated
continuously. This specific model potentially has the most disruptive applications in
the diagnosis and control of cardiovascular diseases. An active Digital Twin should
respect the following requirements:

• Lifecycle follow-up: a digital model replicating a pathological organ or tissue
should evolve over time to reflect changes in the physical system. This requires
the ability to update and modify the digital model.

• Interconnectivity: the twin should have a connection (preferably bidirectional)
with the patient’s anatomical model [149]. It can be part of a more extensive
network of interconnected systems, especially in clinical applications. It needs
to support communication with other digital systems and potentially share data
and insights. In other words, there is a phenotyping of real-world data collected
from the individual’s environment using mobile data sensors and wearable
devices. The continuous interaction with new data through ML methods could
improve the prediction capabilities.

• (Quasi) real-time data integration: a connection with real-time data sources
that provide information about the current state of the physical system is
required. This might involve fast communication with sensors, devices, data
historians and other data collection techniques.

In semi-active DTs, time-varying data are gathered, but rather than performing a
continuous update, the information is analysed once the data collection is complete.
On the other hand, a passive Digital Twin is created with a large amount of physical
data but is used offline or not continuously updated. For example, it can be employed
to understand the risk of aortic aneurysm growth or rupture under various input
conditions that can be applied to the model.

A good compromise in terms of accuracy in representing the physical model should
be achieved. This impacts its geometry, behaviour, interactions and properties. The
level of detail required depends on the clinical application, ranging from high-level
system overviews to highly detailed representations [150]. A user-friendly interface
is often indispensable to interact with and visualize the DT. This can include
dashboards, visualizations and control tools. Indeed, integrating the twin in a clinical
user-friendly environment could enhance its capability to provide a holistic and
inclusive visualization of the desired clinical outcomes.
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2.8 The computational challenges

The integration of CAE methods in diagnosing and supporting clinical decisions
for cardiovascular diseases, especially ascending aortic aneurysms, brings a significant
advancement in modern healthcare. However, while CAE methods offer immense
potential in cardiovascular medicine, they also present challenges related to data
acquisition, image segmentation, computational complexity, clinical validation and
translation that need to be mentioned [151]. The successful implementation of CAE
methods in the diagnosis and management of ascending aortic aneurysms relies on
the integration of multi-modal medical data [152]. Overcoming challenges related to
data acquisition, data sharing and compatibility among different imaging modalities
is vital to enhance the accuracy and reliability of CAE simulations. Implementing a
comprehensive and thorough surveillance program to collect consistent data from
patients with ascending aortic aneurysms is crucial for detecting and verifying the
diagnostic and predictive effectiveness of the developed methods [153]. Advancements
in medical imaging technologies, such as high-resolution imaging, offer promising
avenues for improving the diagnosis and monitoring of ascending aortic aneurysms.
Moreover, significant heterogeneity exists in the measurement of AsAA diameters
due to varying measurement methods [104]. These variations pose challenges in
clinical practice, where different imaging modalities and measurement methods are
frequently used. Discrepancies may further increase when considering the variability
introduced by the operator. In this regard, accurate and robust segmentation
algorithms to capture the details of the aneurysm should be developed [154]. Another
very delicate step concerns deriving the computational grid from the segmentation.
Generating high-quality computational meshes is critical to ensure accurate results
[155]. However, dealing with large-scale and highly deformable geometries can
lead to challenging meshing requirements and potential numerical instability during
simulations. Accurately representing the mechanical behaviour of the aortic wall
and the aneurysm tissue properties is not straightforward. Aortic tissues exhibit
nonlinear, inhomogeneous, anisotropic behaviour of the aortic wall, which necessitates
advanced material models and experimental data for calibration [156]. Moreover,
defining appropriate wall thickness [157] and boundary conditions that mimic the
physiological environment and capture the dynamic behaviour of the heart during the
cardiac cycle and the effects exerted by the surrounding tissues is crucial for reliable
simulations [158]. Modeling the interaction between blood flow and deformable aortic
wall is computationally demanding and requires advanced FSI simulations [159].
There are also open questions regarding modeling flow rheology and turbulence in
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large arteries [160, 161]. Although blood presents non-Newtonian behaviour, more
marked for lower velocity regimes, many contradictory evidences are present on this
topic [162]. It should also be considered that validating computational models against
experimental or clinical data is essential to ensure their reliability [163]. However,
obtaining comprehensive experimental data for patient-specific cases and quantifying
model uncertainties remain challenging tasks. Significant efforts have been made
to enhance the accuracy of numerical models and a common approach is to employ
optimization algorithms that enable the model to estimate these necessary parameters
[164]. Once the model is validated, there is still a lack of understanding of which
biomechanical features of diseased and healthy aortas are relevant to be modelled
[165, 166]. There is then a whole part of extrapolation to a larger population with
the aim of identifying the computational biomarkers and risk predictors associated
with the growth and rupture of ascending aortic aneurysms [167]. The clinical
translation of computational solutions for evaluating and predicting ascending aortic
aneurysms represents a significant advancement in patient care [168]. Bridging
the gap between research and clinical application requires developing efficient and
robust computational tools that can be integrated into clinical practice, which
involves overcoming technical, regulatory and practical challenges [169]. Last but
not least, for the translation of CAE tools into the clinical environment, numerical
simulations, particularly FSI analyses [128], involving the entire ascending aorta and
cardiac cycle are computationally expensive and require significant computational
resources. In typical clinical scenarios, clinicians frequently encounter time-sensitive
situations, such as those with rapidly increasing mortality rates, where waiting for
days or weeks for results is not a viable option [170]. In this regard, AI-assisted
techniques and Digital Twins seem to report consistent time savings and reduced
inter-reader variabilities among radiologists, thereby improving diagnostic follow-up
accuracy [130]. However, it always remains truly challenging to choose the input
and output parameters of the model in order to ensure its control in a clinical
environment [146]. Regarding the aspects purely related to the Digital Twin, several
computational challenges warrant thorough investigation and innovative solutions.
One primary obstacle lies in the integration and interoperability of heterogeneous
data sources, encompassing different patient data types, such as medical images,
electronic health records and wearable sensor data. The complexity of creating an
active system along with its inherent requisites is evident as well as the difficulties
in finding a balance in terms of accuracy and time required for the twin creation.
Moreover, ensuring that DTs remain relevant and accurate over time, considering
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changes in patient conditions, effects of pharmacological therapies and updates to the
model remains something very complex to verify. Additionally, a data-driven model
requires a massive amount of data. On cybersecurity side, safeguarding sensitive
patient data used in creating and updating Digital Twins to comply with privacy
regulations and prevent unauthorized access appears to be very complex. Navigating
regulatory processes to gain approval for using DTs in medical decision-making and
treatment planning is only in its early stages and requires many steps of review [171].
Finally, the computational demands of real-time interaction between the physical
and virtual domains of the Digital Twin present an additional barrier, necessitating
high-performance computing infrastructure for building the underlying architecture.

Efforts are ongoing to address these limitations related to developing Digital
Twins and improve the accuracy and reliability of CAE methods. Dealing with these
computational challenges is pivotal to unlock the full potential of Digital Twins
in healthcare, enabling personalized diagnostics and prognostic insights that can
significantly enhance patient care.

2.9 Aim of the work

In the rapidly evolving landscape of medical science, where the interplay of clinical
needs and technological advancements defines the future of patient care, this thesis
aims to lay the groundwork for the construction of a Digital Twin of the aorta. The
overarching aim of this work is three-fold, each oriented towards addressing specific
challenges in the clinical domain of ascending aortic aneurysms.

Firstly, we aim to redefine the metrics used for predicting the risk associated
with aortic aneurysm growth. Traditional methodologies, predominantly based on
the maximum diameter criterion, have often led to misidentifications, potentially
overlooking patients at high risk. Thus, we aim to extract more accurate growth
predictors that could be included in the realisation of a Digital Twin that could
estimate the patient’s future conditions. By so doing, we strive to enhance the
precision with which we can anticipate the evolution of the aneurysm, thereby
bridging the current gap in early diagnosis and prognosis of this pathology.

Secondly, with the idea of developing particularly accurate Digital Twins in future,
we recognize the importance of developing a high-fidelity model that replicates the
kinematics of a real aorta. A model that mirrors physiological responses more closely
not only allows for more effective treatment planning but also paves the way for
personalized simulations that can cater to individual patient’s aspects. Hence, we aim
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to elevate the benchmark of accuracy by calibrating mechanical boundary conditions
that factor in patient-specific physiological phenomena, such as the visco-elastic
support provided by the surrounding soft tissue and the dynamic effects of heart
motion.

Lastly, while precision remains at the forefront, it is the timeliness of intervention
that often becomes the determinant for clinical success. To that end, our final aim
concerns real-time responsiveness. We want to develop surrogate models at the bases
of advanced Digital Twins that can provide instantaneous responses, particularly in
clinical settings where time remains a scarce commodity. Through this, we envision a
paradigm where clinicians can transition seamlessly from medical imaging to real-time
simulation results, thereby making informed decisions promptly.

In summary, the objective of this work is not only to introduce a disruptively
growing technology, but to lay the foundations and redefine the landscape of aortic
aneurysm management through it.
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Chapter 3

Shape-based ascending aortic
aneurysm growth prediction

This Chapter is the first to describe the methods proposed in this thesis. It
is focused on studying the anatomy of the ascending aorta affected by aneurysm.
As we have previously discussed, a Digital Twin should be capable of tracking the
anatomical evolution of the model over time and, thus, the potential growth of the
aneurysm. We present here growth prediction methods that rely exclusively on
computational shape analysis combined with classification and regression techniques.
Geometrical shape features related to the aneurysm computed from a cohort of
patients with available longitudinal data are extracted. By exploiting the multiple
available acquisitions of the dataset, they are first used to assess the risk of growth
and, after, directly predict the growth rate.

This Chapter is based on the Introduction and Materials and Methods Sections
of the following works:

• "Assessment of shape-based features ability to predict the ascending aortic
aneurysm growth", Geronzi et al., Frontiers in Physiology 14: 378, (2023) [172].

• "Computer-aided shape features extraction and regression models for predicting
the ascending aortic aneurysm growth rate", Geronzi et al., Computers in
Biology and Medicine, 162, 107052, (2023) [173].

It is worth highlighting that the first paper analyzed a smaller cohort of patients
compared to the one addressed in this manuscript and described below. Consequently,
some of the numbers given here could potentially exhibit slight variations compared
to the ones reported in the publication.
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3.1 Introduction

The diameter ineffectiveness as criterion for surgery has already been discussed
before. In literature, cases of aneurysms with diameters below the threshold for
elective surgery which experience rupture or of aortas with huge diameters remaining
stable over time in terms of size are often reported [174, 175]. This results in a
strong need for novel risk evaluation strategies for the aortic aneurysm, incorporating
additional clinical parameters and biomarkers [176]. The anatomy appears to hold
significance in both diagnosing the condition and determining appropriate therapeutic
approaches. Shape alterations frequently lead to functional impairments, which, in
turn, can accentuate anatomical abnormalities. For these reasons, the first part of
this work concerns a detailed morphological analysis aiming to identify those shape
features that can contribute to predicting the aneurysm growth. With the 2022
surgical guidelines, the aneurysm growth rate (GR) became a determining factor for
accessing elective surgery [177]. According to them, surgery should be considered
for patients with aortic diameter growth progressing at a rate exceeding 3 mm/year
during two consecutive acquisitions [67].

Several studies investigating the possible correspondence between aneurysm shape
and growth, most of them dealing with the AAA, have been proposed [178, 179].
The diameter is the most common parameter for assessing the growth and automated
extraction methods based on computational techniques like the maximally inscribed
sphere method have already been proposed in literature [180]. Grobman et al. [181]
emphasized the value of identifying local features in the shape of the abdominal aorta
to assess the risks of aneurysm rupture and establish index thresholds for selecting
patients for surgical treatment. The potential of using algorithms to identify higher-
risk patients has been widely discussed [182]. Two measures related to the AAA
shape, the vessel tortuosity and asymmetry, seemed to show significant relevance in
predicting the aneurysm rupture [183, 184]. A solid contribution to the development
of predictive methods has been provided by machine learning (ML) techniques
[185, 186]. Piccinelli et al. [187] proposed a comprehensive framework for robustly
characterizing vascular geometries, covering all steps from image segmentation to
geometric characterization of the vascular structure. A retrospective dataset of 76
patients was used by Shum et al. to estimate geometric indices and regional variations
in wall thickness and classify patients according to rupture risk criteria and decision
three algorithm [188]. Lee et al. proposed a classifier based on statistical machine
learning to evaluate the risk of rupture of the abdominal aorta from curvature features
[189] while Rengarajan et al. assessed the risk integrating biological information
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with geometric data [190]. Do et al. [191] developed a Dynamical Gaussian Process
Implicit Surface approach to predict the evolution of abdominal aortic aneurysms.
Kim et al. employed convolutional neural networks to predict the exponential growth
of abdominal aortic aneurysms by integrating information on vessel radius, thrombus
thickness and Time Averaged Wall Shear Stress (TAWSS) derived from fluid-dynamic
simulations [192]. Meyrignac et al. [193] combined abdominal aortic lumen volume
and parameters derived from numerical simulation such as wall shear stress with
regression models in order to predict the abdominal aneurysm growth.

Concerning the thoracic aorta, assessing the length of the ascending segment
has shown clinical significance for surgical decision-making [194, 195]. Kruger et
al. proposed a risk score based on centerline length and maximum diameter [196].
Poullis et al. showed that higher curvatures of the ascending aorta corresponded to
increased forces on the wall, explaining the potential impact on the risk of aortic
dissection [197]. AsAA rupture risk has also been assessed by considering indices
derived from the ratio of the patient’s diameter and height or body surface area [198],
suggestions after integrated into the clinical guidelines [67]. Liang et al. proposed
a machine learning approach to evaluate a risk score for patients previously tested
with a computational solid mechanics simulation resulting in rupture [199]. Jiang
et al. [200], using longitudinal data on abdominal aortic aneurysms, Growth and
Remodeling (G&R) techniques and Probabilistic Collocation Method, demonstrated
that the diameter evolution over time could be better predicted using Deep Belief
Network compared to classical non-linear mixed-effect models [201].

The three-dimensional information derived from the overall shape of the segmented
aorta can be more effectively exploited through statistical shape analysis (SSA) [202],
a mathematical technique that allows to model the shape variations of a given
anatomy within a population [203].

This technique includes statistical shape modeling, a method to represent the
shape probability distribution by a mean shape and modes describing the shape
variations [204]. Statistical shape modeling has been widely used in literature for
many medical purposes [205, 206, 207]. The unsupervised Principal component
analysis (PCA) technique is commonly employed to extract linearly independent
components that describe the shape variation within a population. It requires
datasets containing the same number of points. Therefore, when dealing with
computational domains, iso-topological meshes (i.e. having the same number of
nodes and connectivity) are required. These can be achieved through mesh morphing
methods such as: radial basis function (RBF) techniques, moving least squares (MLS)
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strategies, thin plate splines (TPS) methods and Laplacian-based approaches [208]. A
general shape-based framework to identify healthy or diseased anatomical structures
was described by Durrleman et al. [209]. In [210], unsupervised hierarchical clustering
was applied on a set of aortic segmentations and on the reduced PCA-derived dataset
to replicate the diagnoses provided by clinical experts.

A second method alternative to PCA for performing statistical shape analysis
is partial least squares (PLS) analysis. PLS is a multivariate supervised statistical
method used to analyze the relationship between two sets of variables: predictors and
response variables [211]. PLS has been used to assess the risk of myocardial infarction
and predict cardiac remodelling [212, 213, 214]. PCA and PLS have already been
used and compared in predicting the risk of aortic dissection [215], with the second
returning better results in separating patients who will experience dissection and
patients who will not.

In the first part of this study, we describe a method for extracting local shape
features to identify patients at high risk of AsAA growth. In addition to the diameter,
already proposed in the guidelines, these include the ratio between the diameter and
the centerline length, the ratio between the lengths of the external and internal lines
and the tortuosity of the ascending tract. Using longitudinal data from 70 patients,
we segmented each image dataset to obtain patient-specific geometries. Subsequently,
we investigated the correlation between each local shape feature computed from
the first exam and the aneurysm growth rate calculated using the two acquisitions.
Afterwards, we employed and compared six different machine learning classifiers to
predict patients who will present adverse and rapid AsAA evolution and demonstrate
how these new local features can complement the information currently provided by
the diameter assessment. In the second part of the study, we combined regression
methods with local and global shape features to directly infer the growth rate of
each patient. The same local shape features previously mentioned were employed.
Global shape features were specific shape modes derived from principal component
analysis and partial least squares analysis. These techniques were applied to patient-
specific iso-topological computational grids obtained by adapting a template to each
segmentation through RBF mesh morphing.

The details of the methods used have been described in the following Section.
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3.2 Materials and methods

The entire pipeline of this study is presented in Figure 3.1. The current Section
is structured as follows: in Subsection 3.2.1, the dataset is presented, introducing
the inclusion and exclusion criteria. Subsection 3.2.2 describes the developed semi-
automatic segmentation method to extract the 3D anatomy. In Subsection 3.2.3,
the geometric decomposition method executed for extracting local shape features,
i.e., the metrics derived from calculating geometric quantities on each individual
model, is illustrated. The computation of the growth rate is addressed in Subsection
3.2.4. An overview to illustrate the most well-known classification models is provided
in Subsection 3.2.5 while the classification criteria for the risk of aneurysm growth
are identified in Subsection 3.2.6. Moving on to Subsection 3.2.7, we provide an
introduction of the mathematics related to RBF mesh morphing and in Subsection
3.2.8, we delve into its application to obtain iso-topological computational grids,
which will subsequently be used to extract global shape features through principal
component analysis and partial least squares analysis in Subsection 3.2.9. These
features are defined global as they are derived from the entire population and
encompass the overall shape of the ascending aorta with an aneurysm. Finally,
Subsection 3.2.10 describes the regression methods we used to derive the growth rate
for each patient-specific anatomy exploiting local and global shape features.

3.2.1 Dataset

We included patients with an official clinical report indicating a dilated aorta
condition and two 3D acquisitions separated by at least 6 months. Images were
derived from a retrospective dataset obtained from the registry systems of three
medical centers: the University Hospital of Rennes (Rennes, France), the University
Hospital of Dijon (Dijon, France) and the University Hospital of Toulouse (Toulouse,
France). The study was conducted in accordance with ethical standards, and the
data were collected from December 2006 to September 2022. The dataset was fully
anonymized to ensure patients’ privacy.

We used both CT and Magnetic Resonance Angiography (MRA) images, excluding
any data with a resolution worse than 1 mm x 1 mm x 1 mm. Patients with both
bicuspid and tricuspid valves were included.

To increase the likelihood of producing reliable and repeatable results, additional
exclusion criteria were set: (1) patients younger than 25 years, (2) aneurysms related
to systemic inflammatory diseases, (3) prior aortic valve surgery, (4) acute aortic
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Figure 3.1: Full workflow for identifying patients at high risk of aneurysm growth through
local shape features and classification methods and predicting the aneurysm growth rate
by means of local and global shape features combined with regression techniques.

syndrome, (5) congenital tissue disorders such as Marfan syndrome and (6) images
with artefacts. Globally, N = 70 patients were included. 47 (67.1%) patients had
double ECG-gated acquisitions. The longitudinal dataset consisted of 120 (85.7%)
CT scans and 20 (14.3%) MRA. 85 acquisitions (60.7%) were performed with contrast
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agent injection and 55 (39.3%) without.

3.2.2 Segmentation

The segmentation of the whole thoracic aorta, from the aortic annulus to the
descending aorta at the level of the diaphragm, was obtained using 3D Slicer [216]. 3D
Slicer is a free and open-source software platform used for medical image processing
and visualization. It was the software used to treat and visualize the patient’s data.
It provides, in fact, various tools and modules for image analysis, segmentation,
registration, and three-dimensional reconstruction. We used a semi-automatic local
thresholding method based on the grey-level histogram derived from analysing three
sets of voxels. Each set was determined by initially identifying three points in
different areas of the aorta: the ascending aorta, the aortic arch and the descending
aorta. Around each point used as center, three spheres of radius 5 mm were built, as
shown in Figure 3.2 (A). All the voxels distributed inside each sphere were acquired
to determine the grey level interval for segmenting the aorta. After extracting the
3-dimensional surface with Flying Edges algorithm [217], a manual editing process for
verifying that it corresponded to the inner lumen of the vessel and for the correction
of possible improperly segmented portions was performed, especially in the case of
geometries derived from MRI acquisitions. A median filter was then applied with a
kernel size of 3 mm. At the end of the segmentation procedure, a patient-specific
tessellated surface made up of 8000-15000 triangular elements has been obtained, as
shown in Figure 3.2 (B).

Figure 3.2: (A) Spheres built around the markers to acquire the grey levels for the
thresholding method. (B) Final model derived from segmentation.
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3.2.3 Local shape features extraction

The shape features extraction required a geometric decomposition of the vessel.
The first step was the calculation of the centerline, as some of the metrics were
directly influenced by its conformation, direction and length [218]. It was extracted
using Vascular Modelling Toolkit (VMTK) through Voronoi diagrams [219] after
an automatic detection of the inlet and outlets seed points [220]. The segmented
domain S related to the AsA and the corresponding centerline tract C were isolated
with a first cut perpendicular to C at the level of the annulus and a second one in
correspondence to the ostium of the brachiocephalic trunk. The methods to derive
each shape feature are detailed below.

3.2.3.1 Diameter

The AsA intra-luminal diameter was measured by extracting n=100 sections Ψk

for k=1,...,n perpendicular to C and equally spaced along it. Figure 3.3 (A) shows
one of the thoracic aorta segmentations, the isolated ascending tract and a subset of
20 sections. On each section Ψk, the maximum diameter Dmaxk

was obtained as the
longest of the segments resulting from the intersection between Ψk and a rotating a
plane perpendicular to Ψk, passing through xck

(the point of intersection between Ψk

and C) and sweeping angles of α = 22.5◦, as shown in Figure 3.3 (B). The maximum
diameter D for the entire vessel, current main criterion for elective AsA surgery, is:

D = max{Dmax1 , ..., Dmaxn} (3.1)

3.2.3.2 Diameter-centerline ratio

By using the maximum diameter D and computing the length of AsA centerline
L(C), we defined the diameter-centerline ratio DCR:

DCR = D

L(C) (3.2)

3.2.3.3 External-internal line ratio

Given the tessellated surface S consisting of a set F of triangular faces Fi such that
any point P ∈ S lay in at least one triangle Fi ∈ F , we could identify a polygonal
curve Γ xa ,xo

j on S starting from an arbitrary point xa ∈ Ωannulus and reaching
another arbitrary point xo ∈ Ωostium where Ωannulus and Ωostium were respectively
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the boundaries of S at the level of the annulus and at the level of the ostium. The
length L(Γ xa ,xo

j ) is:
L(Γ xa ,xo

j ) =
∑

Fi∈F

L
(
Γ xa ,xo

j|Fi

)
(3.3)

where L
(
Γxa,xo

j|Fi

)
was measured according to the Euclidean distance. We defined the

shortest discrete geodesic ΓG as the shortest path:

ΓG = argmin
xa,xo,j

L(Γ xa ,xo
j ) (3.4)

The length L(ΓG) resulted in being the shortest geodesic distance. We used the
Dijkstra method [221] to find the set of discrete geodesic over the entire aortic domain
connecting all points xa ∈ Ωannulus with xo ∈ Ωostium and we selected the shortest
of them. The resulting broken line was then smoothed to obtain the aortic internal
curvature line (ICL).

After, for each section Ψk, defining xick
the point of intersection between Ψk and

ICL, the direction given by the versor vck pointing towards the centre of the aorta
xck

was identified:

vck =
−−−−→xick

xck

∥−−−−→xick
xck

∥
(3.5)

The intersection between the axis along the direction vck and S defined a new point
xeck

, as reported in Figure 3.3 (C). The repetition of this procedure on the n sections
Ψk allowed the creation of the set of points controlling the spline corresponding to
the external curvature line (ECL). In Figure 3.3 (D), ECL and ICL are shown.
The ratio between the external and internal curvature line lengths EILR was then
computed:

EILR = L(ECL)
L(ICL) (3.6)

3.2.3.4 Tortuosity

The last local shape feature we computed was the tortuosity T , defined as:

T = L(C)
L(C0)

(3.7)

where C0 was the straight line connecting the first and the last points of C.
Except for the manual identification of the brachio-cephalic trunk ostium, the

procedure for computing the shape features was without any user interaction. The
geometric decomposition methods were developed using Python, Visualization Toolkit
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(VTK), Insight Toolkit (ITK) and Qt in 3D Slicer environment.

Figure 3.3: The full aorta segmentation, the discrete ascending aorta domain S and a
subgroup of 20 aortic sections perpendicular to the centerline (A). A generic section Ψk

isolated for the calculation of the related maximum diameter Dmaxk
; the centerline of the

ascending section C and the segment C0 are also shown (B). Identification of the point xeck

to compute the external curvature line (C). Isolated ascending section with the external
and internal curvature line (ECL and ICL) (D).
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3.2.4 Growth rate

Even if the diameter threshold for elective surgery may not have been met,
patients experiencing rapid AsAA growth over time should be carefully and constantly
monitored [222]. For this reason, we can deduce that the risk of aneurysm rupture is
closely related to the risk of aneurysm growth [223]. Exploiting longitudinal data,
the aneurysm growth rate GRi was derived by dividing the difference in maximum
diameters by the time gap ∆τi, measured in months, between the two acquisitions:

GRi = D′′
i −D′

i

∆τi

(3.8)

All the growth rates were computed and stored in the vector Y:

Y = (GR1,GR2, . . . ,GRN) ∈ RN (3.9)

The Mann-Whitney test was used to compare the GR values derived from ECG-
gated data with those computed on patients for whom at least one acquisition was
not gated. The relationship between the proposed local shape features and the
growth rate was then evaluated using Spearman’s correlation coefficients. Statistical
analysis was performed using Matlab (version 9.12.0, R2022a).

3.2.5 Classification and regression models: general overview

Classification and regression are two methods that aim at predicting outcomes
based on input features and labeled training data [224]. They are supervised
techniques, as they require labeled data to learn the relationship between inputs
and outputs. Both require a training phase and a prediction phase. The goal of
classification is to assign input data points to predefined categories or classes where
the output variable is categorical, and the algorithm learns from labeled data to make
predictions for new unseen data. In regression, the aim is to predict a continuous
numerical value rather than a discrete class label. A few more details on the ML
models employed in this work are given below.

3.2.5.1 Decision Tree

Decision Tree (DTr) is a supervised machine learning algorithm used for classifi-
cation and regression tasks [225]. It is a tree-like model where the data is recursively
split into subsets based on the values of the input features, with the goal of making
predictions or assigning labels to new data points.
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The decision tree starts with a single node, known as root node, representing the
entire dataset. The data are then split into subsets based on the values of a specific
feature and this process continues recursively until a stopping criterion is met. The
decision tree algorithm chooses the feature that best separates the data at each
node based on a specific criterion (e.g., Gini impurity or entropy for classification
tasks and mean squared error for regression tasks) [226]. Decision Trees can be
prone to overfitting, especially when the tree is deep and not appropriately pruned.
Setting maximum depth and implementing ensemble methods like Random Forest
and Gradient Boosting tor pruning techniques are often valid solutions to mitigate
overfitting [227].

Once the tree is built, to make a prediction for a new data point, the algorithm
follows the path down the tree, evaluating the values of the features at each node
and assigning the data point to the appropriate leaf node. For classification tasks,
the predicted class label is determined by the majority class of the data points in
the leaf node. For regression tasks, the predicted value is the average of the target
values of the data points in the leaf node.

3.2.5.2 Linear Discriminant

Liniar Discriminant (LD) is a classification technique with the main objective of
determining a linear combination of features that best separates two or more classes
in a dataset. The linear combination is chosen to maximise the distance between the
means of the classes while minimizing the variance within each class [228]. Given a
dataset containing samples with their corresponding feature vectors and class labels,
Linear Discriminant aims to find a lower-dimensional representation of the data that
retains the most relevant discriminative information.

LD focuses primarily on projecting the features from higher dimension space to
lower dimensions. The separability between classes, i.e., the distance between the
mean of different classes, is computed. This is called between-class variance Sb.

Sb =
Nc∑
i=1

Ni (x̄i − x̄) (x̄i − x̄) (3.10)

where Nc is the number of classes, Ni is the number of observation in the i-class, x̄i

is each mean class value, x̄ is the overall mean. The distance between every sample
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and the mean of each class is derived. It is also called within-class variance Sw.

Sw =
Nc∑
i=1

Ni∑
j=1

(xi,j − x̄i) (xi,j − x̄i) (3.11)

The lower-dimensional space which maximizes the between-class variance Sb

and minimizes the within-class Sw variance is built. P is considered as the lower-
dimensional space projection.

PLD = arg max
P

∣∣∣PTSbP
∣∣∣

|PTSwP|
(3.12)

Finally, the data is projected onto the selected linear discriminants to obtain the
reduced-dimensional representation. This new lower-dimensional space allows for
better separation between classes, making the classification easier.

3.2.5.3 Logistic Regression

Logistic Regression (LR) is a statistical method used for binary classification
problems, where the goal is to predict a binary outcome based on one or more
input variables (features). It is called "logistic" because it uses the logistic function
(sigmoid function) to model the relationship between the input variable x ∈ Rn and
the binary outcome Y ∈ {0, 1} [229]. Defining a sigmoid curve F (x) centered on a
point u (usually 0.5) and a density function f(x), the logistic formula can be written
as follows:

F(x) = P (X ≤ x) = 1/(1 + exp(−(x− u)/γ)) (3.13)

The model calculates the probability of the binary outcome being true (represented
as 1) given the input features and the conditional probability distribution of the
binomial logistic regression model [230]:

P(Y = 1 | x) = exp(w ⊗ x + b)
1 + exp(w ⊗ x + b) (3.14)

where x ∈ Rn is the input vector, w ∈ Rn is the weight vector, b ∈ R is the offset,
w ⊗ x is the inner product of w and x. If the returned probability is higher than the
sigmoid center, the model predicts the positive class (1); otherwise, it predicts the
negative class (0).

43



3.2 Materials and methods Shape-based growth prediction

3.2.5.4 Naive Bayes

Naive Bayes (NB) is a probabilistic machine learning algorithm commonly used
for classification tasks based on the assumption that Bayesian principle and feature
conditions are relatively independent.

The basic idea behind Naive Bayes is to calculate the probability of a particular
instance belonging to a specific class, given its feature values. It assumes that the
features are conditionally independent [231].

Naive Bayes operates as a conditional probability model by assigning probabilities
p (Ck | x1, . . . , xn) for each of the K possible output classes Ck, given a problem
instance to be classified, represented by a vector x = (x1, . . . , xn) encoding n features
(independent variables). The problem with the above formulation is that if the
number of input features n is large or a feature can take on many values, then basing
such a model on probability tables is infeasible. The model must be reformulated to
make it more tractable. Using the Bayes theorem, the conditional probability can be
decomposed as:

P (Ck | x) = P (Ck)P (x | Ck)
P (x) (3.15)

The naive Bayes classifier incorporates this model and a decision-making rule in
practical applications. A frequently used decision rule involves selecting the hy-
pothesis that maximizes the probability of correctness to reduce the chances of
misclassification. This decision criterion is known as Maximum A Posteriori (MAP)
decision rule. The classifier resulting from this approach, known as a Bayes classifier,
is a function responsible for assigning class labels ŷ = Ck for some k as follows:

ŷ = argmax
k∈{1,...,K}

P (Ck)
n∏

i=1
P (xi | Ck) (3.16)

3.2.5.5 Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm
used for both classification and regression tasks [232]. It is particularly effective in
scenarios with complex decision boundaries and high-dimensional feature spaces. In
the context of classification, SVM aims at finding the optimal hyperplane that best
separates different classes of data points [233]. The hyperplane:

wTx+ b = 0 (3.17)
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is the boundary for which the margin ψ, i.e., the distance between the data points of
different classes, is the maximum. The data points closest to the hyperplane and
determining its position are called support vectors. The main idea behind SVM is to
transform the original feature space into a higher-dimensional space, allowing the
effective separation of the data points of different classes by means of the hyperplane.
This transformation is achieved through kernel functions, which extract the inner
products between the data points in the higher-dimensional space without explicitly
calculating the transformation. For a binary classification problem, the objective
of SVM is to solve the following optimization problem that aims at maximizing the
margin ψ while keeping all data points on the correct side of the hyperplane [234]:

ψ(w,b) = 2
∥w∥

(3.18)

where w is the weight of the hyperplane, x is the input feature vector and b is the
bias vector. SVM can handle different kernel functions, such as linear, polynomial
and sigmoid kernels.

3.2.5.6 K-nearest Neighbors

K-nearest Neighbours (KNN) is a supervised machine learning algorithm used for
both classification and regression tasks [235]. It is a non-parametric and instance-
based learning algorithm, meaning that it does not make any assumptions about the
underlying data distribution and stores the training data points as part of its model.
KNN is used to classify new data points or predict their numerical values based on
their proximity to the training data.

During the training phase, KNN memorizes the entire training dataset, storing
the feature vectors and their corresponding class labels in case of classification or
numerical values in case of regression [236]. When making predictions for a new
data point, KNN identifies the K nearest neighbours in the training dataset based
on a distance metric (e.g. Hamming or Euclidean distance). The value of K is a
user-defined parameter and determines how many neighbours will be considered for
the prediction [237]. The choice of K is critical in KNN. A small value of K (e.g.,
K = 1) can lead to noisy predictions and high sensitivity to outliers. In contrast,
a high value of K may cause the algorithm to lose important local patterns and
result in overly smoothed predictions. The value of K is usually chosen based on
cross-validation or other tuning techniques to find the optimal balance between bias
and variance. For classification tasks, the predicted class for the new data point
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is determined by a majority vote among the classes of the K nearest neighbours.
The class that appears most frequently among the K neighbours is assigned as the
predicted class. Concerning the regression, the predicted value for the new data
point is calculated as the average of the target values of the K nearest neighbours.

KNN becomes computationally expensive when dealing with large datasets,
especially in high-dimensional feature spaces. Additionally, it is sensitive to the scale
of features, so it is common to perform feature scaling before applying the algorithm.

3.2.6 Machine learning growth risk prediction

We divided the dataset into two risk classes according to the observed growth
rate. All patients with GR ≤ 0.25 mm/month composed the low-risk class (61
patients), while the others represented the group with rapid growth (9 patients).
This threshold was chosen according to the surgery guidelines previously mentioned,
where a threshold value of 3 mm/year was indicated. For every individual, we then
tried to predict the belonging class by using ML classifiers based on the metrics
derived from the first acquisition acting as possible predictors of growth. We initially
tested the diameter D alone derived from the first exam in order to predict the
GR-related risk class. Then, a second classification was conducted, selecting all the
shape features together. Six different classification models [238] were used: Decision
Tree, Linear Discriminant, Logistic Regression, Naive Bayes, Support Vector Machine
and K-nearest Neighbours. Except for LR, the hyperparameter values were optimized
minimizing the classification error. We use a leave-one-out cross-validation method to
assess the predictive accuracy of the classification models. The first of the evaluated
results is the accuracy, defined as:

accuracy = TP + TN
TP + TN + FP + FN (3.19)

Sensitivity and specificity are calculated as:

sensitivity = TP
TP+FN (3.20)

specificity = TN
TN+FP (3.21)

where true positive (TP) is the number of fast-growing aortas correctly identified,
true negative (TN) represents the number of low-risk shapes correctly identified,
false negative (FN) is the number of high-risk geometries incorrectly identified as low
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risk and false positive (FP) consists in the low-risk shapes incorrectly identified as
high risk. We obtained these values by analyzing the confusion matrix, a 2x2 matrix
where the diagonal represents the correctly classified aortas and the anti-diagonal
represents misclassifications. In addition to accuracy, sensitivity and specificity, the
performances were measured using the area under the receiver operating character-
istic (AUROC) curve, which represents the probability that the input parameter
(parameters) is (are) higher for the class with fast growth than for the one with slow
growth and thus is a measure of discrimination. Finally, to describe the diagnostic
value of the proposed shape features, likelihood ratios (LHRs) are used:

LHR+ = sensitivity
1 − specificity (3.22)

LHR− = 1 − sensitivity
specificity (3.23)

LHR+ (LHR-) represents the change in the odds of having a diagnosis in patients
with a positive (negative) test.

3.2.7 Mesh morphing background

With the aim of obtaining a set of iso-topological grids, RBF mesh morphing
can be used to adapt a reference mesh to a new patient’s anatomy [239, 240]. Mesh
morphing is, in fact, a technique used to modify the shape of a computational grid
[241]. Among the morphing methods available in the literature, RBFs are well known
for their interpolation quality [242]. Several advantages are related to the RBF mesh
morphing approach: the robustness of the procedure is preserved, any kind of mesh
typology is supported without the requirement to regenerate it and the process can
be parallelized and integrated in any solver. On the other hand, this method is
slightly slow when dealing with hundreds of millions of nodes, although this is not
the case. RBFs allow to interpolate in the space a scalar function known at discrete
points, called Source Points (SPs). By solving a linear system of order equal to
the number of SPs employed [239], the displacement of a mesh node in the three
directions in space can be described. The approach is meshless and able to manage
every element type related to surface and volume meshes. The interpolation function
is defined as follows:

s(x) =
N∑

i=1
γiφ (∥x − xsi∥) + h(x) (3.24)

where x is a generic position in space, xsi the SP position, s(·) the function
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which represents a transformation Rn → R, φ(·) the radial function of order m, γi

the weight and h(x) a polynomial term with degree m − 1. The unknowns of the
system, namely the polynomial coefficients and the weights γi of the radial functions,
are retrieved by imposing the passage of the function on the given values and an
orthogonality condition on the polynomials. The linear problem can be also written
in matrix form: M P

PT 0

 γ

β

 =

g
0

 (3.25)

in which M is the interpolation matrix containing all the distances between RBF
centres Mij = φ (∥xi − xj∥), P the matrix containing the polynomial terms that has
for each row j the form Pj = [1, x1j, x2j, ..., xnj ] and g the known values at SPs. If a
deformation vector field has to be fitted in 3D (space morphing), considering h(x) as
a linear polynomial made up of known β coefficients:

h(x) = β1 + β2x+ β3y + β4z (3.26)

Each component of the displacement prescribed at the Source Points can be
interpolated as follows:

sx(x) = ∑N
i=1 γ

x
i φ (∥x − xsi∥) + βx

1 + βx
2x+ βx

3y + βx
4 z

sy(x) = ∑N
i=1 γ

y
i φ (∥x − xsi∥) + βy

1 + βy
2x+ βy

3y + βy
4z

sz(x) = ∑N
i=1 γ

z
i φ (∥x − xsi∥) + βz

1 + βz
2x+ βz

3y + βz
4z

(3.27)

When working with a mesh, the new nodal positions can be retrieved for each
node as:

xnodenew
= xnode +


sx(xnode)
sy(xnode)
sz(xnode)

 (3.28)

where xnodenew and xnode are the vectors respectively containing the updated and
original positions of the given node.

3.2.8 Mesh morphing application

The iso-topological grids required for the statistical shape analysis were built
using RBF mesh morphing, whose mathematical background was previously given in
Section 3.2.7. The cubic kernel φ(r) = r3 was chosen to interpolate the displacements
in 3D space [243].
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The initial shape used to generate the first mesh was identified as the one reporting
the median aortic diameter of our patient population, as done for the femur by Grassi
et al. [244]. The baseline mesh, consisting of E = 37400 quadrilateral elements and
K = 37620 nodes, was obtained using ANSA pre-processor (BETA CAE Systems,
Switzerland). A preliminary step was performed to align all the segmented models
to the baseline mesh through an iterative closest-point algorithm. As already done
by Biancolini et al. [245], a two-step morphing procedure was applied to modify
each time the reference mesh in order to exactly match the target segmentation.
The first step of the morphing procedure involved approaching the target segmented
surface, while the second in completely projecting the deformed surface on the target
geometry to achieve a perfect fit. Controlling the mesh using morphing is particularly
difficult in case of biological models with few detectable anatomical landmarks [246],
as the ascending aorta. In this regard, we developed a method to extract some
pseudo-landmarks from the 3D surface, avoiding the need for manual landmark
placement. The SPs to drive the morphing, corresponding to the pseudo-landmarks,
were automatically derived through an equally-spaced sampling of the previously
derived splines from the geometric decomposition and reported in Figure 3.4. 8
splines derived from 45◦ angles were sampled. 10 SPs per spline were collected on
the initial model for a total of 80 SPs. A displacement was imposed to the SPs
of the initial model in order to match the SPs extracted from the target geometry
and the mesh nodes were updated through RBF interpolation, as reported in the
appendix. To ensure the overlapping of the entire wall, the modified surface nodes
were projected onto the target segmentation in the second step. The direction of
projection was determined by the normal of each node of the reference mesh. To
reduce mesh distortion due to morphing and the influence of the model chosen
as initial template, once the N = 70 iso-topological grids were obtained, a mean
template was derived and mesh morphing was performed again on all grids starting
from it. A new mean template was then generated and used for the subsequent steps.

3.2.9 Global shape features extraction

Using the collection of iso-topological grids, a data matrix X containing K mesh
nodes was created:

X = (x1,x2, . . . ,xN) ∈ R3K×N (3.29)

SSA to extract global shape features was first performed by creating a statistical
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Figure 3.4: Splines used to collect the Source Points required to impose the morphing.

shape model based on the principal components and after using partial least squares
analysis. All the algorithms were developed using Python.

3.2.9.1 Statistical shape model

Principal component analysis was used to extract the principal modes of variation
by computing the eigenvectors of the covariance matrix C of the training data:

C = 1
N − 1XXT ∈ R3K×3K (3.30)

The eigen-equation related to the covariance matrix is:

Cϕj = λjϕj (3.31)

where ϕj is the eigenvector corresponding to the eigenvalue λj and represents the
directions of variation of the data. Eigenvalues and eigenvectors are ordered from
high to low variance. The contribution of each shape mode to the total variance was
given by its corresponding eigenvalue λj [247].

A factorization of the data matrix through singular value decomposition (SVD)
can be performed:
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X = USVT (3.32)

with U ∈ R3Kx3K and V ∈ RNxN unitary matrices (U−1 = U∗ and V−1 = V∗) and
S ∈ R3KxN matrix containing the singular values sj on the diagonal.

Thus, equation 3.30 can be written as:

C = 1
N − 1

(
USVT

) (
USVT

)T
(3.33)

and simplifying:
C = 1

N − 1US2UT (3.34)

This demonstrates that the singular values of the data matrix are related to the
eigenvalues of the covariance matrix:

λj = 1
N − 1s

2
j (3.35)

Once the template or mean shape x is extracted, each patient shape x̃i belonging
to the dataset can be reconstructed using the first M shape modes:

x̃i(w) = x̄ + ϕw (3.36)

where w is the vector containing the shape feature weights for the i-patient which
can be derived from:

w = ϕT (xi − x̄) (3.37)

Assuming the data follows a normal distribution, each feature weight wj is
conventionally bounded within a certain range of the standard deviation:

−ξlim

√
λj ≤ wj ≤ ξlim

√
λj (3.38)

where ξlim is usually assumed equal to 3. In other words, wj is a scalar value providing
the geometrical influence of each shape mode on the final deformed model. Only the
first M of the N eigenvectors were selected to account for a predetermined percentage
of the variance and synthetically represent each aortic shape in the dataset. M can
be chosen by computing the compactness (CN) and finding the number of shape
modes for which the variance curve reaches 80%, 90%, 95% or 99%. CN is defined
as the sum of variances normalized by the whole cumulative variance:

51



3.2 Materials and methods Shape-based growth prediction

CN(M) =
∑M

j=1 λj∑N
j=1 λj

(3.39)

The CN curve shows how many PCA modes are required to describe a certain
amount of variation in the dataset. A second parameter to assess the quality of
the statistical shape model is the generalization (GE). It is used to estimate its
capability to represent unseen data and is computed as the average sum of square
errors of a leave-one-out (LOO) procedure [248]. Each time, in fact, one patient
is excluded and a new statistical shape model is built using the N − 1 remaining
ascending aortic shapes. The new statistical shape model is then used to reconstruct
the shape of the left-out patient and the difference between the original shape and
the reconstruction is quantified using the mean square error, progressively including
additional modes. For this work, GE was computed using up to M shape modes:

GE(M) = 1
N

N∑
i=1

∥xi − x̂i (M)∥2 (3.40)

where xi and x̂i are the original and rebuilt left-out shapes, respectively.

3.2.9.2 Partial least squares analysis

PCA modes are extracted purely from the patient matrix X without taking into
account any external information related to the examined shapes. On the other
side, PLS performs a simultaneous decomposition of X and Y in order to obtain the
highest correlation for the score vectors of both the input and output matrices [249].
This ensures maximal interdependencies between the shapes and the output variables,
making the statistical shape decomposition application-oriented as dependent on
the clinical response variables, i.e., the growth rate. Whereas PCA tries to identify
hyperplanes that capture the most significant variation in the data, PLS employs a
linear regression model that involves projecting the predicted and observable variables
into a new space to establish the fundamental relationships between them. PCA
generates a set of orthogonal components that are uncorrelated and ordered by the
amount of variance. PLS, on the other hand, generates a set of latent variables that
capture the maximum covariance between the X and Y matrices.

Given two standardized matrices X′ = XT ∈ RN×3K and Y ∈ RN×Z where N is
the number of observations (shapes), 3K is the number of predictor variables (point
coordinates), Z is the number of predicted variables and defining the number of
shape modes M , PLS returns the relations between these two matrices through score
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vectors. The X’ and Y matrices are decomposed as follow:

X′ = TPT + E
Y = UQT + F

(3.41)

where T ∈ RN×M , U ∈ RN×M are the matrices of the M extracted score vectors t
and u, P ∈ R3K×M and Q ∈ RZ×M represent the matrices of loadings and E ∈ RN×3K

and F ∈ RN×Z are the matrices of residuals. The PLS method finds weight vectors
b, c such that:

[cov(t,u)]2 = [cov(X′b,Yc)]2 = max
|r|=|s|=1

[cov(Xr,Ys)]2 (3.42)

where cov(t,u) = tT u/N denotes the sample covariance between the score vectors.
PLS is based on an iterative process: the non-linear iterative partial least squares

(NIPALS) algorithm [250]. It starts with a random initialization of the score vector
u and executes the following steps until convergence is reached:

• b = X′T u/
(
uT u

)
• ∥b∥ → 1

• t = X′b

• c = YT t/
(
tT t

)
• ∥c∥ → 1

• u = Yc

Since in this case Z = 1 (we aim at predicting only the patient-specific values
of the growth rate in Y), Y can be denoted as y and u = y. Consequently, the
NIPALS procedure converges in a single iteration. The weight vector b is equal to
the first eigenvector of the following eigenvalue problem [251]:

X′T YYT X′b = λb (3.43)

After the extraction of the score vectors t and u, a process of deflation of the
matrices X and Y is performed by subtracting their rank-one approximations based
on t and u. Various deflation methods can be used, which define different versions
or variants of PLS. The vectors of loadings p and q can be derived from (3.41) as
coefficients of regressing X′c on t and Y on u, respectively:
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p = XT t/
(
tT t

)
and q = YT u/

(
uT u

)
(3.44)

Since Z = 1, the PLS1 deflection method can be used:

X = X − tpT (3.45)

It is based on the assumption that the score vectors t are good predictors of Y and
that a linear inner relation between the scores vectors t and u exists, i.e:

U = TD + H (3.46)

where D ∈ RM×M is the diagonal matrix and H denotes the matrix of residuals, The
deflation of y is technically unnecessary in PLS1.

For the PLS modes, the new patient-specific shape features score vectors ti were
computed and used for the prediction.

3.2.10 Regression-based growth rate prediction

Once the shape features had been computed, regression models were used to
directly infer the patient-specific growth rate. Our approach involved both local
and global shape features. Regarding the local, given the positive and statistically
significant correlation results with the growth rate reported in Chapter 6, Subsection
6.1.1, DCR, EILR and T were employed together. For the global, the patient-
specific weights w related to the PCA modes and the PLS scores t were used as
a predictor of the growth rate. Concerning the PCA modes, we used a F-test as
feature ranking algorithm to order the predictors by importance [252]. Higher scores
were associated with higher-importance shape features. The null hypothesis of each
F-test is that the means of the response values, which are grouped by predictor
variable values, are drawn from populations with equal means. On the other side,
the alternative hypothesis is that the means of the populations are not all the same.
If the resulting p-value of the statistical test is small, the corresponding predictor
variable has a significant impact on the response variable. We reported as output
the scores of the F-test FS = −log(p). Thus, a high score value indicates that the
corresponding predictor is relevant. The first three ordered PCA modes were used as
global shape features. Although not necessary for the PLS shape features choice, the
same F-test was applied to the PLS scores to observe the differences with the scores
from PCA. The regression model used for the local shape features and the PCA-based
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global shape features was the SVM, which had already shown promising results in
similar studies [199] and had previously demonstrated good classification capabilities,
as shown in Chapter 6, Subsection 6.2.2. This machine learning model is able to
describe the nonlinear relationships between shape features and aneurysm growth.
A Gaussian kernel function was employed and the hyperparameters, reported in the
results section, were tuned by minimizing the prediction mean square error (MSE)
[253]. Regarding the PLS regression, we only considered the first three components
of the PLS, as these refer to the shape features most significantly correlated with
the computed growth rate. LOO cross-validation was performed to evaluate the
performance of each regressor and the regression accuracy was determined through
root mean square error (RMSE). R2 values are reported for both local and global
shape features to assess the regression fit quality. The marginal effect of each
predictor on the response in terms of growth rate is described by reporting the
partial dependence plots between the predictor variables and the predicted responses.
Finally, the SVM regression surface for the representative PCA-based global shape
features is provided to understand how the predicted growth rate varied as the shape
changed according to the variability of the studied population.
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Chapter 4

Calibration of the mechanical
boundary conditions for a
high-fidelity thoracic aorta model

In the previous Chapter, the importance of anatomy in the study of aortic
aneurysms has been highlighted. Nevertheless, a comprehensive analysis must also
be founded upon numerical simulation, particularly in developing three-dimensional
numerical models to establish a reliable Digital Twin. In this Chapter, we delve into
the cardiovascular patient-specific numerical simulation. Our analysis focuses on the
complex interplay between the aorta and the surrounding organs, in particular soft
tissue, heart and spine. We first go through the state of the art about patient-specific
aortic modeling, covering the limited approaches proposed in the literature to consider
the cardiac motion imposed on the annulus and the inclusion of mechanical boundary
conditions accounting for the organs around the aorta. Afterwards, we present a
detailed procedure to tune the parameters governing such boundary conditions in
order to achieve a computational model whose kinematics closely replicate that
derived from the images.

This Chapter relies on the Sections Introduction and Materials and Methods of
the following publication:

• "Calibration of the mechanical boundary conditions for a patient-specific thoracic
aorta model including the heart motion effect", Geronzi et al., IEEE Transactions
on Biomedical Engineering, (2023) [254].
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4.1 Introduction

Cardiovascular patient-specific simulation aims to bring a new insight into biomed-
ical issues with the purpose of improving diagnosis, optimizing clinical treatments and
predicting possible surgical outcomes [255]. Generally speaking, a patient-specific
finite element model should incorporate the discretized geometry, the governing
equations, the initial state information and the boundary conditions [256]. Its ac-
curacy in reproducing the behaviour of the real vessel and potentially identifying
accurate biomarkers to understand and predict the possible evolution of the aneurysm
should be carefully treated [257]. To achieve a deep understanding of the phenomena
concerning the evolution of AsAA, high-fidelity simulations of the human vasculature
based on patient-specific geometries and precise biomechanical models appear to be
essential.

Typically, the realization of these models involves integrating reconstructions
from medical images with experimental data [258]. The study conducted by Beller et
al. [259] demonstrated a significant improvement in accuracy when considering aortic
root motion and its impact on wall stress and strain. They found that the downward
displacement of the aortic root led to increased stress on the wall, potentially posing
a risk for the development of aortic dissection. Wittek et al. [260] conducted
a comparison of the three-dimensional time-varying wall kinematics between the
ascending and abdominal aorta. They discovered that AsA experiences a complex
deformation pattern characterized by alternating clockwise and counterclockwise
twists. This study thereby highlighted the significant influence of heart motion in
stretching the aortic root and elevating AsAA wall tension [261]. The importance of
including cardiac motion in the assessment of fluid-dynamic outputs for evaluating
the patient’s health condition was highlighted in the study presented by Wendell et
al. [262]. Weber et al. [263, 264] analysed the aortic displacement due to heartbeat
in patients with chronic type B aortic dissection. Their findings revealed that the
displacement was significantly higher in the ascending aorta compared to the aortic
arch and descending tract. Rueckert et al. [265] proposed a technique for tracking
specific sections of the ascending and descending aorta employing Spin-echo MRI.
Their approach involved an energy minimization method based on a deformable
model, which dynamically adapted to the aortic section over time, facilitating accurate
tracking and segmentation.

On fluid-dynamics, the role of personalization is well described in [266]. To derive
the patient-specific hemodynamics, personalization is typically conducted using 0D
models [267]. They are used to partition the system where the fundamental variables
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are presumed to be uniformly distributed and change only over time. The governing
equations for these models are ordinary differential equation (ODE). 0D parameters
can be exploited to represent the whole CVS physiology or any portion of it. The
physiological parameters of pressure, flow and volume can be linked to voltage,
current and charge in analogous electrical models [268]. The motion resulting from
the heartbeat significantly influences the flow pattern within the thoracic aorta [269].
In [270], a method to model the aortic physiological distensibility response to pressure
without incurring the computational cost of fluid-structure simulation was proposed.
By adopting a quasi-static approach and neglecting wave propagation phenomena,
the authors observed a significant underestimation of the aortic wall distensibility
when the longitudinal stretch of the aorta was not considered. This finding indicated
that inaccuracies induced by the heart motion were far more significant than those
arising from spurious reflections on artificial boundaries.

To ensure a relevant anatomical and physiological fidelity level when analyzing
wall deformation, it is crucial to incorporate patient-specific tissue material properties
[271], include the pre-stress at the vessel wall [272, 273] and account for its interaction
with the surrounding structures [274]. The importance of employing mechanical
support at the arterial wall was shown in [275]. In [276], the effects of considering
the tissues surrounding the abdominal aorta and the presence of the spine on the
wall stress have been investigated by integrating information derived from ultrasound
images. Gindre et al. [277] developed a model of abdominal aorta with viscoelastic
external tissue support defined over the entire wall. Moireau et al. [278] and
subsequently, Baumler et al. [279], without considering the presence of the valve
and removing the Valsalva sinuses, introduced a boundary condition for the thoracic
aorta wall consisting in a viscoelastic term representing the support provided by the
surrounding tissues and organs. They opted to handle the external tissue support on
the external arterial wall with Robin boundary conditions, dividing the aorta into a
few large macro-areas. In [280], exploiting multi-phase CT, a first approach with
a sequential method to calibrate the mechanical boundary condition for the model
proposed in [278] was proposed.

In this part of the work focusing on high-fidelity modeling, we propose a method
to calibrate 4 parameters governing the mechanical boundary conditions of a patient-
specific thoracic aorta model, which includes the annulus motion effect. We begin
describing how we introduced mechanical boundary conditions (BCs) along the artery
wall consisting of visco-elastic components representing the support provided by the
surrounding soft tissue and able to reproduce the interaction of the aorta with the
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spine, different in each node of the computational grid. The fluid-dynamic model,
built to derive the pressure field at the wall, which also involves the whole area
of the Valsalva sinuses and includes the modelling of the aortic valve, is coupled
with a 0D closed loop reproducing the full cardiovascular circulation. Through an
iterative procedure based on purely CSM simulations, we aim at increasing the model
fidelity by tuning the parameters governing the BCs with the goal of obtaining an
improved correspondence between the displacement of the simulated model and that
extracted from the medical images. In each simulation, the pre-stress at the wall is
included by deriving the zero-pressure configuration. Afterwards, starting from this
unloaded state and applying the pressure load previously derived, 4 cardiac cycles
are reproduced. A strongly-coupled fluid-structure interaction analysis is finally
performed with the BCs controlled by the calibrated parameters and the results are
compared to the ones derived from purely structural simulation.

4.2 Materials and methods

In order to correctly include the effect of the blood flow and the deformations
resulting from the flow ejection into the calibration process, we devised a decoupled
fluid-structure interaction strategy. In this approach, we conducted a single CFD
analysis to obtain the pressure field at the wall and then applied this load to multiple
structural simulations. The accuracy of this approach was discussed for the abdominal
aortic aneurysm in [281].

Figure 4.1: Workflow of the calibration procedure.

The general overview of the entire procedure applied to a thoracic aorta model with
an aneurysm is shown in Figure 4.1. It consists of two steps: (1) a preliminary step
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in which we built the thoracic aorta computational model with mechanical boundary
conditions controlled by non-calibrated initial parameters taken from Gindre et
al. [277]. A preliminary transient CFD simulation coupled with a 0D closed loop
representing the CVS and used to impose quasi-patient-specific 0D-derived boundary
conditions was performed to obtain the wall pressure field Pw(t). In parallel, the
motion of the annulus was tracked from cine-MRI and its global displacement in
the three spatial directions (DX(t), DY (t) and DZ(t)) was derived. The splines
representing the boundaries of the aorta were extracted and the alignment between
them and the Finite Element (FE) model was ensured by means of the Iterative Closest
Point algorithm. (2) Inside the calibration loop, first, the steady-state zero-pressure
shape was derived by solving an inverse problem in which the diastolic pressure
field Pw(tdiast) was applied. Then, starting from this new unloaded configuration, a
structural simulation was performed reproducing 4 cardiac cycles, applying Pw(t)
and the displacement retrieved from the annulus motion. The intersections between
the deformed FE model and the cine-MRI planes were computed and compared
to the splines previously obtained from the segmentation of the 2D dataset. This
iterative procedure was repeated until the convergence criteria described later in this
work were reached or the number of iterations was beyond the maximum allowed.
The value of the parameters at the end of the calibration was the most suitable
to reproduce the aorta displacement derivable from cine-MRI data. To assess the
sensitivity of the method, the calibration was conducted three additional times, each
with different initial guesses. These initial guesses were carefully selected by exploring
the parameter space through a Response Surface analysis [282]. Once the model
was tuned, a fully-coupled fluid-structure interaction simulation was performed to
verify the differences with the purely structural simulation. The different steps of
the procedure are detailed in the following paragraphs.

4.2.1 Image dataset and experimental data

We used a set of retrospective and experimental data collected on a patient who
underwent surgery for AsAA. The patient was part of the dataset on which the
shape-based growth prediction algorithms presented in Chapter 3 were developed. He
was a 67-year-old man, 184 cm tall and weighing 89 kg with a maximum ascending
aorta diameter of 52 mm and a stenotic bicuspid aortic valve type 1 L-R, the most
common congenital cardiac abnormality associated with ascending aortic aneurysm
[283, 284]. The subject presented diastolic and systolic pressure respectively of 72
mmHg and 105 mmHg detected from non-invasive measurement at the level of the
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arm during the MRI acquisition, conducted 6 days before surgery. The proposed
approach relies on cine-MRI sequences to derive the aorta kinematics: this technique
provides a good temporal resolution and an excellent signal-to-noise ratio [285]. MRI
images were acquired using a 3 Tesla scanner equipped with a phased thoracic coil
from Siemens (Siemens Healthineers, Erlangen, Germany). The acquisition was
performed in apnea and the patient’s heart rate during the procedure was 61 bpm.
The cine-MRI sequence, consisting of 256 x 208 pixel images, was gated and returned
25 temporal frames of the cardiac cycle with a 2D spatial resolution of 1.5 mm x 1.5
mm, a slice thickness of 5 mm and a temporal resolution of 42 ms according to the
patient’s cardiac rhythm. In the same exam, MRA in breath-holding conditions was
performed after the injection of Gadolinium contrast agent. The ECG-gated MRA
images were acquired during the end-diastolic phase and their spatial resolution was
1 mm x 1 mm x 1 mm. This dataset consisted of 416 x 312 x 72 voxels.

4.2.2 Segmentation and mesh generation

9 sagittal and 2 oblique Left Ventricular Outflow Tract (LVOT) cine-MRI ac-
quisitions from which the aorta displacement and deformation could be derived
were segmented in 3D Slicer [286] by 2D region growing and subsequent manual
refinement. Through each obtained mask, the boundaries corresponding to the
intersection of the cine-MRI plane and the aorta were extracted by employing VTK
Canny Edge Detector filters. The set of points obtained from the centroids of the
pixels belonging to the aortic boundaries was used to generate some splines. These
splines were subsequently relaxed using 20 iterations of Taubin Smoothing [287].
They were employed to calibrate the mechanical boundary condition parameters of
the aorta as a function of the vessel kinematics. We emphasize that conventional
cine-MRI is limited to capturing motion in a 2D plane. Consequently, as the vessel
motion occurs in space, the aortic portion obtained at each frame corresponds to a
different part of the vessel, given that its motion occurs in three-dimensional space.
At each time frame, all the points generating the splines on the 11 planes resulted in
a point cloud. Consequently, in each of the 25 frames, the aorta appeared slightly
displaced and deformed. The initial frame of the cine-MRI sequence was identified
as the end of diastole, corresponding to the cardiac phase during which the MRA
was conducted. To avoid the creation of an ill-conditioned problem, the mechanical
BCs were calibrated by studying the motion only in a subset of the 25 frames. In
particular, assuming the point cloud derived from the first frame as initial reference,
the subsequent frame with the nearest neighbour distance [288] between the related
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point cloud and the reference one higher than 1.5 mm was taken as new reference and
involved in the calibration. This guaranteed the inclusion of boundaries for which a
displacement of at least 2 pixels occurred. In this way, only the frames numbered
φ={3,5,7,9,11,13,19} were collected for the calibration procedure.

Figure 4.2: The aortic model and the spine derived from the segmentation. The cine-MRI
slice from which the area corresponding to the valve jet could be detected is shown. The
fluid domain inlet was created on the specific plane by segmenting the area extracted from
this cine-MRI acquisition during systole.

The anatomical models shown in Figure 4.2 and representing the aorta and spine
were extracted from the MRA images. The three-dimensional MRA dataset was
segmented using a thresholding method. Coronary arteries were not included as they
were not visible. The surface geometry was imported into ANSA pre-processor (BETA
CAE Systems, Switzerland) to generate the computational grid. The structural mesh
for the aortic wall ΓW was created using 14000 fully-integrated 4-node quadrilateral
shell elements. The AsA domain was identified and isolated from the rest to perform
the calibration, as depicted in Figure 4.3. The CFD grid consisted of approximately
2 million structured hexahedral elements. Eight inflation layers [289] for a total
thickness of 2 mm with a growth rate equal to 1.5 were generated. The inlet
of the aorta was determined by segmenting a specific cine-MRI acquisition taken
perpendicular to the vessel centerline and at the level of the valve leaflets. (Figure
4.2). The advantages and drawbacks of 2D valve modelling using the projection of
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the orifice area have already been discussed in [290, 291, 292]. Although the images
were captured in the same exam without any supposed patient movements, the
diaphragm position for subsequent apnea periods may have been slightly different.
To ensure accurate spatial alignment, a rigid registration process based on ten steps
of the Iterative Closest Point method was employed between the 3D aortic model
and the point cloud derived from the first frame of the cine-MRI sequence.

Figure 4.3: (A) The CFD model of the aorta and the lumped parameters used to generate
the boundary conditions. (B) The CSM model of the aorta in which the Robin BCs,
graphically represented by a parallel of a spring and damper, are used: the ascending
tract on which the calibration is performed is shown in purple. (C) The dummy node
displacement dxDN (t), dyDN (t), dzDN (t).

4.2.3 Annulus tracking

The aortic valve annulus was tracked with a semi-automatic algorithm relying on
anatomical landmarks [293] in Blender [294]. Among the 9 sagittal slices used for the
segmentation, only 5 of these encompassed the annulus and were used for the tracking.
The two oblique LVOT slices were additionally employed to derive the motion in
the three directions of space. For the first frame of every sequence, a landmark was
placed at each annulus extremity to detect the plane on which it lay. A window
pattern area of 10 x 10 pixels was automatically created around each landmark to
identify the extremities of the annulus. The search area was further defined using a
larger second window of 15 x 15 pixels. Starting from the first frame, in which the
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initial landmarks were manually positioned, planar tracking was conducted for the
subsequent frames by correlating grey levels within the new search area with the
pattern area of the frame before. At each step, the reference frame was updated
with the newly identified window (Figure 4.4 (A)). A successful tracking was deemed
valid when the highest correlation between the grey levels of the newly positioned
window pattern and its corresponding position in the previous frame was achieved.
Afterwards, the 2D coordinates of the landmarks in the images were mapped back
to their corresponding 3D positions using the DICOM information. To acquire the
motion imposed by the cardiac muscle and minimize the effects of wall dilation due to
the blood flow pressure [295], the average of all the extracted landmark displacements
was obtained for each frame. In this calculation, the contribution in the x,y, and z
directions of each landmark belonging to a cine-MRI plane, of which n = [nx, ny, nz]
was its normal, was respectively weighted by wx = 1/(1 − n2

x) 1
2 , wy = 1/(1 − n2

y) 1
2

and wz = 1/(1 − n2
z) 1

2 to scale the value considering the orientation of the plane to
which the landmark belonged. If the cine-MRI plane was perfectly perpendicular
to one of the 3 main axes, the undefined weight relative to it was assumed equal to
zero and the null displacement value was excluded for the average computation. A
unique 3D motion (DX(t), DY (t) and DZ(t)) shown in Figure 4.4 (B) applicable to
move the inlet of the aorta was thus obtained.

Figure 4.4: (A) The annulus plane tracked in one sagittal cine-MRI sequence. (B) The
annulus motion (DX(t), DY (t) and DZ(t)) derived from all landmark positions.
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Table 4.1: 0D lumped parameters

Symbol Name Value

CBCA Capacitance after BCA 1.1 · 10−9 m3/Pa
RBCA Resistance after BCA 5.1 · 107 (Pa·s)/m3

LBCA Inductance after BCA 1.2 · 103 (Pa·s2)/m3

CLCCA Capacitance after LCCA 1.2 · 10−10m3/Pa
RLCCA Resistance after LCCA 2.6 · 107 (Pa·s)/m3

LLCCA Inductance after LCCA 1.9 · 107 (Pa·s2)/m3

CLSA Capacitance after LSA 1.0 · 10−10 m3/Pa
RLSA Resistance after LSA 1.7 · 107 (Pa·s)/m3

LLSA Inductance after LSA 1.0 · 104(Pa·s2)/m3

CDA Capacitance after DA 9.8 · 10−9m3/Pa
RDA Resistance after DA 1.9 · 107(Pa·s)/m3

LDA Inductance after DA 1.4 · 106 (Pa·s2)/m3

RD1 Resistance 1 Downstream 1.8 · 109 (Pa·s)/m3

RD2 Resistance 2 Downstream 1.1 · 108 (Pa·s)/m3

CD Capacitance Downstream 3.7 · 10−9 m3/Pa

RU1 Resistance 1 Upstream 2.4 · 108 (Pa·s)/m3

RU2 Resistance 2 Upstream 7.1 · 107 (Pa·s)/m3

CU Capacitance Upstream 1.7 · 10−10 m3/Pa

4.2.4 Fluid-dynamic model and 0D closed loop

To derive the CFD boundary conditions, a quasi-patient-specific 0D closed loop
representing the entire cardiovascular system was employed [268]. The lumped
parameters of the systemic circulation, shown in Figure 4.3 (A), were tuned in
order to match the available cuff pressure measurement using the method proposed
in [296, 297]. The obtained values are reported in Table 4.1. The time-varying
elastances of the heart chambers were simulated by employing the characteristic
elastances for the right and left ventricle and atrium (ERV , ELV , ERA, ELA) and the
activation functions proposed in [298] and [299]. These functions were adapted by
considering the peak systolic time TP S = 0.28 s, the time of ventricular relaxation
TV R = 0.45 s and the duration of the cardiac cycle T = 0.98 s. The remaining
parameters for the pulmonary circulation of the CVS were taken from literature
[300]. The curves obtained from this loop and representing the Dirichlet boundary
conditions for the fluid-dynamic simulation are displayed in Figure 4.3 (A). A no-slip
boundary condition was set at the wall. For the 3D fluid-dynamic domain ΣF , the
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fluid was considered incompressible and Newtonian and the flow model selected was
Viscous-Laminar. The following parameters were not directly estimated from the
patient’s data: the blood density ρ = 1100 kg/m3 and the dynamic viscosity µ = 4
cP [301]. The rigid-wall CFD simulation was performed in Ansys® Fluent v22.1
(Ansys Inc., Pittsburgh, PA, USA) solving the following Navier-Stokes equations
without the effect of external forces:

Du
Dt = −1

ρ
▽P + ν▽2u, in ΣF (4.1)

▽ · u = 0, in ΣF (4.2)

with u the velocity, P the pressure and ν the kinematic viscosity of the fluid. With
a time step of 10−3 s, a total of 10 cardiac cycles were reproduced to achieve cycle-
independent results. The time-varying wall pressure field Pw(t) of the last cardiac
cycle was stored.

4.2.5 Structural model

The structural model is reported in Figure 4.3 (B). The ex-vivo material properties
of the patient’s arterial wall were directly obtained from experimental tests conducted
immediately after surgery with the techniques described by Morgant et al. and
Lin et al. [302, 303]. Specifically, bi-axial tests were conducted on eight samples
encompassing the lateral, medial, posterior and anterior portions of the ascending
aorta. As a result, eight distinct stress-strain profiles and eight different thickness
measurements were obtained. To create the FE model, the average thickness of
1.3 mm was adopted and an average stress-strain curve was computed using the
collected experimental data. To replicate the global deformation behaviour of the
vessel [304], we introduced a non-linear isotropic strain-energy potential W using a
three-parameter hyperelastic Mooney-Rivlin model [305], expressed as a function of
the first and second Cauchy invariants Ī1 and Ī2 [306].:

W = C10
(
Ī1 − 3

)
+ C01

(
Ī2 − 3

)
+ C11

(
Ī1 − 3

) (
Ī2 − 3

)
(4.3)

A least-square fitting was performed for the new averaged curve, resulting in the
following parameters: C10 = -1.47 MPa, C01 = 1.62 MPa, and C11 = 2.31 MPa. The
assessed fitting quality, including the root mean square error (RMSEMAT) and the
R-square value (R2

MAT), is reported in the results.
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To consider the global relationship between aorta and spine and neglecting the
intra-thoracic pressure as the acquisition was performed in breath hold, as done in
[277], the following equation modelling the external tissue support through Robin
boundary conditions was used:

σext = −Kx − ηẋ (4.4)

with σext the stress due to the external load, K and η the parameters that model
the external tissue elastic and viscous support, x the displacement, ẋ the velocity.
The stiffness K can be decomposed along the three anatomical directions: x-coronal,
y-transvers, z-sagittal. On the other hand, η is assumed constant and set to 105

(Pa·s)/m for each node and direction in space, as done in [278]. More in detail, we
connected each node i ∈ ΓW to three dampers and three springs, each related to the
j-direction of the 3D space. The stiffness of each spring was modelled as:

Kji
= KST +Wdi

WjKSP INE (4.5)

here, KST represented the initial parameter sought to represent the stiffness of the
soft tissue surrounding the aorta. We assumed that the force applied by the soft
tissue was equal in all three spatial directions. Wj was the weight to be optimized for
each spatial direction, while KSP INE = 106 Pa/m, obtained from [277], represented
the stiffness that related the aorta to the spine. Wdi

acted as the scaling factor
taking into account the distance to the vertebrae, calculated as follows:

Wdi
= 1 − αs

di

dmax

(4.6)

with αs= 0.95, d the vector containing the minimum Euclidean distance of each
node of the aortic wall from the spine and dmax the maximum distance, in this model
equal to 142 mm. For BCA, LCCA and LSA, an additional set of springs (in green
in Figure 4.3 (B)) was introduced to account for the upper trunk vasculature on the
aortic vessel wall [307, 308]. These connected each node of the boundaries ΨBCA,
ΨLCCA and ΨLSA to three new additional nodes located along their outgoing central
axis at a distance of twice the mean diameter. The upstream vasculature stiffness
KUS on each boundary was assumed to be uniform across all 2D elements and defined
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by the following arithmetic mean:
KUSBCA

= mean(KΨBCA)
KUSLCCA

= mean(KΨLCCA)
KUSLSA

= mean(KΨLSA)
(4.7)

where KΨBCA , KΨLCCA , and KΨLSA represent the vectors containing the stiffnesses
of the subgroup of springs belonging to ΨBCA, ΨLCCA, and ΨLSA, respectively. The
time-varying pressure field Pw(t) derived from the CFD was applied to the aortic
wall ΓW . Since a Dirichlet boundary condition, like the displacement from sequential
images, was not concurrently compatible with the pressure load, a strategy involving
a dummy node (DN) was implemented. Specifically, the motion of the inlet boundary
Ψinlet was controlled using the following constraint equation:


nΨinlet

dxDN(t) − ∑nΨinlet
1 dxi(t) = 0

nΨinlet
dyDN(t) − ∑nΨinlet

1 dyi(t) = 0
nΨinlet

dzDN(t) − ∑nΨinlet
1 dzi(t) = 0

(4.8)

where nΨinlet
denoted the number of nodes of Ψinlet, dxDN(t), dyDN(t), dzDN(t) the

x, y and z displacements imposed to the dummy node, shown in Figure 4.3 (C)
and respectively set equal to DX(t), DY (t) and DZ(t), and dxi(t), dyi(t), dzi(t) the
displacement of a single node of Ψinlet. This approach ensured that the inlet could
deform during the cardiac cycle. It is important to point out that we neglected the
effects of rotation of the aorta around the axis passing through the centre of the
annulus as it was impossible to retrieve this information from the 2D images.

4.2.6 Zero-pressure computation

Typically, a segmented 3D model reconstructed from medical images corresponds
to a partially deformed configuration of the vessel, resulting from an in-vivo pressure
field [309]. Indeed, the geometry obtained from MRA segmentation corresponded to
a loaded state at the end of the diastolic phase. In order to include the pre-stress, we
computed the zero-pressure configuration [310]. To obtain it, we solved an inverse
problem using the iterative method described in [311], with the updating parameter
α = 1. From the end-diastolic phase of the rigid-wall CFD simulation, the static
pressure Pw(tdiast) on ΓW was extracted and applied to the structural model. In the
steady-state analysis, the aorta was only constrained by the entire set of springs, as
the dampers had no effect. For the convergence criterion of the iterative algorithm,

68



4.2 Materials and methods Calibration boundary conditions high-fidelity modeling

an error on the maximum Euclidean nodal distance (threshold of 0.1 mm) between
the pressurized zero-pressure model and the one derived from MRA in diastole was
included and a limit of 20 iterations was established. The Ansys LS-Dyna implicit
solver was used.

4.2.7 The calibration method

The calibration process was carried out exclusively on the ascending aorta wall
ΓAAw, which was defined from the annulus to the plane perpendicular to the centerline
at the level of the BCA ostium. In this domain, the experimental tests on the aorta
were indeed conducted. In each iteration of the iterative calibration procedure, we
first derived a new zero-pressure model and then performed a structural analysis
in which, in a time equivalent to one cardiac cycle, the unloaded aorta was forced
to reach the diastolic configuration and, after that, 3 complete cardiac cycles were
simulated to stabilise the results.

The update of the parameters at each iteration was carried out through a least
squares optimisation using Levenberg-Marquardt (LM) method [312]. It aimed at
minimizing the following loss function consisting of the L2 norm:

f(p) =
√√√√∑

φ

m∑
l=1

nl∑
k=1

∣∣∣dφ
l,k(p)

∣∣∣2 (4.9)

where m = 11 is the number of splines derived from the segmented aortic boundaries
during each selected cardiac phase, p = [WX ,WY ,WZ , KST ] is the vector containing
the 4 input parameters to be optimised, nl is the number of points defining the
l-spline and dφ

l,k is the nearest neighbour distance of each point k belonging to the
spline l and all the points of the corresponding spline derived from the simulated
model. In this way, for each point of the reference spline, we were searching for the
nearest point in the second point cloud and computing the Euclidean distance. In
other words, if xφ

l,k is the k-point of the l-spline and xsim is a point of the set Sφ
l (p)

obtained from the intersection of the same planes of the cine-MRI and the 3D model,
as graphically shown in Figure 4.5, the function dφ

l,k(p), used as error metric, was
defined as:

dφ
l,k(p) = d(xφ

l,k,S
φ
l (p)) = min

xsim∈Sφ
l (p)

∥∥∥xφ
l,k − xsim

∥∥∥ (4.10)

From now on, the superscript IT will indicate the iteration of the LM algorithm.
Regarding the resolution of the optimisation, we set a maximum limit of 50 iterations
and established the following termination criteria:
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• parameters stability: max
∣∣∣hIT

i /pIT
i

∣∣∣ < ϵ1

• loss function stability: f(pIT ) − f(pIT −1) < ϵ2

• gradient convergence: max
∣∣∣JIT T rIT

∣∣∣ < ϵ3

with hIT the vector containing the updates of the 4 parameters and rIT the vector
with the residual distances between two iterations.

The threshold parameters used were ϵ1=10−3, ϵ2=5·10−3m and ϵ3=10−3. To
quantify the effect of the parameters calibration and the annulus motion, we performed
3 additional simulations after the conclusion of the full procedure: the first by
removing the heart motion on Ψinlet and with the non-calibrated Robin BCs; the
second by considering the heart motion effect but still on the model with the non-
tuned parameters; the third by removing the annulus motion but using the parameter
values of the Robin BCs at the end of the calibration procedure. These simulations
were compared to the complete structural simulation by reporting the differences in
maximum strain at the aortic wall.

The structural simulations were performed using LS-Dyna as well. The calibration
was run on a Dell Precision 7820 workstation equipped with 2 16-cores Intel® Xeon
Gold 5218 and 256 Gb RAM.

Figure 4.5: Splines represented in a specific frame for two different cine-MRI sequences
used for the calibration. The wall of the computational model is shown in yellow.
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4.2.8 Parameter ranges and sensitivity analysis

For the baseline FE model, we started by assuming isotropic Robin boundary
conditions with values obtained from literature [277], thereby establishing an initial
parameter vector p1=[1,1,1,105 Pa/m]. The minimum value of the range for the
three weights WX , WY , WZ was set to 0 in case of no discernible relationship between
the spine and the aorta and external support due only to the surrounding soft
tissue. In this specific configuration, the minimum value for KST was also set to 104

Pa/m, value below which convergence could not be achieved due to the insufficiently
constrained model. As the stiffness of the Robin boundary conditions increased,
the model became progressively less capable of expanding during the cardiac cycle.
Considering that, the procedure to obtain the maximum value of the parameters
consisted in altering one parameter at a time starting from the initial guess. By
assuming a change in the mean diameter of the ascending aorta between diastole and
systole of at least 1 mm [313], we identified the maximum value of each range when
the new parameter value resulted in diameter changes smaller than this threshold.
Thus, the maximum value of the parameter ranges were 2.2, 1.3, 1.4 and 2·106

Pa/m respectively for WX , WY , WZ and KST . To find the ε vector containing the
normalized updating values for constructing the Jacobian matrix JIT , we performed a
sensitivity analysis by studying the convergence of the partial derivatives to preserve
the linear approximation of the first-order Taylor expansion, as detailed in [314].
For each parameter of p1, we executed an iteration of the workflow using each time
a different increment value ∈ {0.1, 0.05, 0.02, 0.01}. The convergence of the partial
derivatives was achieved using ε = [0.02, 0.01, 0.01, 0.02].

To enhance the robustness of the method and assess the sensitivity of the output
based on the choice of initial guess, the Response Surface (RS) methodology [282] was
employed. A Design of Experiments consisting of 16 Design Points (DPs) (DP1,...,
DP16) obtained within the parameter ranges by Latin hypercube was prepared [315].
The cost function was computed for each of the 16 Design Points. The RS was
calculated using the Genetic Aggregation method [316] and cross-validated using
leave-one-out, reporting the final root mean square error (RMSERS) and the relative
maximum absolute error (RMAERS). The RS ability to predict the output was
assessed using the coefficient of determination (R2

RS). The complete calibration
was then repeated using 3 of the Design Points (DP1, DP2 and DP3). These three
DPs were chosen because they were the ones for which the distance from the point
previously chosen as initial guess in the normalized ranges, evaluated using the norm,
was the highest.
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4.2.9 Strongly-coupled fluid-structure interaction analysis

Once the parameters were tuned, we performed a fully-coupled fluid-structure
interaction analysis to compare the differences between the deformed structural
domain obtained from this simulation and the deformed aortic wall resulting from
the calibration purely based on structural simulation.

The same fluid-dynamic and structural models described earlier were used, as
well as the same boundary conditions. In order to start the FSI simulation with the
zero-pressure state, the solid domain was deformed by RBF mesh morphing [317],
technique already described in Chapter 3, Subsection 3.2.7.

As previously explained by Capellini et al. [318], mesh morphing can exploit a
motion imposed on a set of surface nodes acting as Source Points in order to perform
a RBF interpolation in space, which in turn modifies the positions of the volume
nodes. In our case, we used all surface nodes of the original FE model derived from
the segmentation in diastole as Source Points and we imposed a translation to each
of them to achieve the computed zero-pressure state associated with the calibrated
model. Regarding the FSI coupling details, the maximum number of sub-iterations
for the resolution was set to 50.

Minimum and maximum time steps were set to 1e-5 s and 5e-5 s, respectively. A
partitioned resolution approach was used. The FSI method used was the penalty-
coupling algorithm available in Ansys LS-Dyna, v22.1. The fluid sub-problem
and the solid sub-problem were independently solved and the FSI coupling was
ensured by interface coupling conditions. To compare the FSI simulation with the
structural simulation based on calibrated parameters, we analyzed the two deformed
surface grids and reported the maximum error as the maximum Euclidean distance
(DMAXFSI) between corresponding nodal positions and the maximum root mean
square error (RMSEFSI) throughout the entire cardiac cycle. Finally, calling p
the vector containing the calibrated parameters, a new cost function fFSI(p) was
computed according to (4.9) but using the deformed wall of the fully-coupled FSI
simulation.
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Chapter 5

Real-time hemodynamics
prediction through surrogate
modeling

One of the main limitations of numerical simulation in enabling Digital Twins
for clinical applications is the high computational cost. Surrogate modeling, also
known as meta-modeling, is a technique used to create a simplified mathematical
model that approximates the behaviour of a more complex and computationally
expensive original system. In this context, model order reduction techniques refer to
the methods aiming at reducing the computational complexity related to the high
number of degrees of freedom typical of full-order models. They can be used for
problems requiring real-time results or a substantial number of simulations, such
as system control and optimization processes. Since a reduced-order model is a
simplified approximation of a more complex and detailed original model, it is crucial
to understand how well it captures the behaviour of the original system across
different scenarios, especially for assessing the reliability and quality of the predictive
abilities.

In this Chapter, we present the state of the art related to surrogate models
built through model order reduction for cardiovascular applications. Our primary
objective is to propose a pipeline to adeptly predict numerical simulation results
within a short temporal window, thus facilitating their integration into a clinical
environment through a possible active or semi-active Digital Twin. We propose a
methodology to implement a streamlined pipeline based on model order reduction,
enabling a full transition from medical images to numerical simulation results without
laborious manual steps. In addition, a validation approach is described to assess the

73



5.1 Introduction Real-time hemodynamics prediction

meta-model’s ability to predict the hemodynamics for new unknown anatomies.

5.1 Introduction

Numerical simulation tools allow healthcare professionals to practice, test and
refine their skills in a realistic environment, enabling the visualization of the results
in a safe and controlled environment [319]. Full order models (FOMs) solving the
parameterized Navier-Stokes equations of blood flow dynamics, where parameters
encompass geometric features, boundary conditions and physical properties, are now
widely used in cardiovascular research. The translation of numerical simulation based
on FOMs into clinical environments is challenging due to the long computational
times and the manual work of an operator to prepare the models. The computational
cost is mainly due to the requirement of solving a large-scale system of discrete PDEs.
The computational power necessary to run these simulations can be expensive and
can limit the number of simulations performed in a given time period. Due to the
increased complexity of the models and the large datasets that need to be processed,
supercomputing clusters and particular domain expertise are often required [320].
This can be particularly challenging for medical professionals who need quick decisions
for patient care, especially when a large number of evaluations is required [321].
This aspect stands as one of the fundamental requisites in establishing an active
or semi-active Digital Twin, particularly when prompt interaction with specialized
medical personnel is required to evaluate specific conditions. Therefore, there is a
strong need to develop additional algorithms and tools to reduce computational time
in order to develop efficient and accurate clinical applications based on personalized
solutions [322].

In recent years, the research about real-time simulation technology has become
increasingly considerable, providing healthcare professionals with a more realistic,
interactive experience in a simulated environment.

Different approaches have been developed and applied for order reduction of
blood vessel models. As introduced in Chapter 4, a first possibility is the reduction
of the 3D vessel dimension to obtain 0D, 1D or 2D models of the arteries [323].
Unfortunately, when the applications require frequent 3D model evaluations across
a range of input parameters, FOMs become computationally expensive due to the
substantial degrees of freedom required for an accurate flow system representation,
leading to extensive computational time and memory usage. In this regard, data-
driven surrogate models based on reduced order models (ROMs) could stand as valid
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alternatives [324] due to their ability to efficiently capture the essential behaviour of
complex systems while significantly reducing the computational cost. Model order
reduction techniques are helpful in overcoming computational complexity-related
problems by reducing the system degrees of freedom. They can be categorized into
intrusive and non-intrusive methods [325]. Intrusive approaches modify the original
governing equations by reparameterizing them or introducing additional terms [326].
They require a deep understanding of the underlying physics and equations governing
the system. While intrusive methods may provide accurate results, they could be
computationally expensive and require extensive and tedious modifications to the
existing codes. Non-intrusive ROMs do not modify the equations and are based
on existing simulations or data to approximate the final solution [327]. They are
often easier to implement as they leverage existing simulations or experimental data.
Usually, they are more flexible and applicable to a broader range of problems but
may sacrifice some accuracy compared to intrusive methods. Thus, both intrusive
and non-intrusive reduced-order models have their advantages and limitations. The
choice between them depends on the specific requirements, computational resources
and level of accuracy needed for the studied problem. ROM-based data-driven
surrogate models seek to capture the relationship between modeling inputs (such as
geometry, inlet/outlet conditions, and material properties) and computed surface
(such as wall pressure and shear stress distribution) or volume (such as the flow
field) outputs, using comprehensive simulation data. A purely data-driven model
relies on training data to learn the mapping between input and output parameters.
Consequently, it is clear that, at best, the surrogate model can reach an accuracy as
good as the underlying training data. Non-intrusive reduced-order models involve
projecting the complete set of governing PDEs, such as the Navier-Stokes equations
in case of fluid-dynamics, onto a reduced subspace defined by a set of basis functions.
One commonly used technique is the proper orthogonal decomposition (POD) [328].
Using ROMs can significantly reduce the computational cost of simulating a patient’s
cardiovascular system. This would allow running simulations on systems with limited
resources, such as mobile devices, and obtaining results (almost) in real-time. The
generation of a data-driven ROM comprises two main stages: an offline phase during
which the reduced-order space is constructed based on a set of simulation results
called ‘snapshots’ derived from different values of the physical and geometrical input
parameters and an online phase that involves obtaining new unknown solutions by
combining the precomputed reduced basis functions.

ROMs have become an increasingly attractive tool for obtaining real-time simula-
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tions of cardiovascular systems [329]. Indeed, they have already been successfully
applied to simulate a variety of cardiovascular organs and tissues. Being one of
the enabling keys for personalized models, they are likely to play an increasingly
important role in the future of cardiovascular medicine and Digital Twin-based tech-
nologies [330]. The importance of using reduced-order models to represent cardiac
electrophysiology and hemodynamics has been discussed by Dal Santo et al. [331].
The strain on the thrombus during thrombectomy procedures was assessed through
a surrogate model by Bridio et al. [332]. It was created through principal component
analysis and kriging. A first approach to create a data-driven reduced-order model
for blood flow simulations based on 2D geometries was proposed by Ye et al. [333].
Liang et al. performed a feasibility study on using surrogate models based on neural
networks to perform real-time CFD simulation of the thoracic aorta [334]. A method
to construct a ROM for deriving the flow and extracting WSS in abdominal aortic
aneurysms using CFD simulations and POD, allowing comprehensive analysis of
the model system across various inflow angles without repeated simulations, was
presented by Chang et al. [335]. Bisighini et al. used reduced-order models to
derive an approximate solution of the position of the expanded stent in an idealised
cerebral aneurysm geometry [336]. A morphing approach based on non-uniform
rational basis-splines (NURBS) combined with free-form deformations techniques
was described by Siena et al. to create a reduced-order model of the coronaries
in presence of stenosis [337]. Instead, Kardampiki et al. [338] used reduced-order
models to observe the effects on fluid dynamics due to the shunt configuration chosen
in modified Blalock-Taussig shunt procedures. Reduced-order models have already
been employed by Biancolini et al. [240] to artificially modify the size of an ascending
aortic aneurysm and evaluate changes in fluid-dynamics. A surrogate model based
on deep learning was built by Du et al. to evaluate fluid-dynamics for the aortic
coarctation [339].

In this work, we describe a framework to obtain real-time simulation results and
augment the information derived from patient-specific medical images, one of the crit-
ical steps in enabling active or semi-active Digital Twins. We apply the procedure to
predict the hemodynamics of ascending aortic aneurysms. The anatomical geometry
is derived from deep learning segmentation, and rigid registration is applied to align
all the shapes of the available dataset to an initial meshed template. Mesh morphing
is then applied to ensure the iso-topological properties of the computational domains
and respect the correspondences between the anatomical parts. The set of shapes
obtained is then used to build a statistical shape model through principal component
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analysis. From the derived subspace, atlases are extracted, synthesising in this way
a huge cohort of patients. Computational fluid-dynamic simulations are performed
for each synthetic shape, adding input parameters for the inlet (ejection velocity)
and outlet (Windkessel resistance) boundary conditions. 3D surrogate models are
built using model order reduction techniques. In particular, the Genetic Aggregation
Response Surface method is used to reconstruct a primal output, i.e. the pressure
and a derived variable, i.e. the wall shear stress. Once the reduced-order model
is trained, the ability of the surrogate model to predict the simulation results is
evaluated. The meta-model is then converted into a Functional Mock-up Unit and im-
ported into the desired working environment. The complete approach presented here
involves a validation process conducted by excluding one patient at a time from the
creation of the meta-models and attempting to represent the left-out patient-specific
hemodynamics using the latest surrogate models created.

5.2 Materials and methods

Performing hundreds of simulations to create a large training dataset is compu-
tationally prohibitive, especially when employing multiphysics models. A trade-off
in terms of model fidelity has to be accepted to reduce the computational cost. In
this case, since the goal is to propose an approach for hemodynamics prediction
and provide a validation strategy for the prediction ability of the surrogate models,
steady-state simulations are performed and a simplified CFD approach in comparison
to the FSI approach discussed before is employed.

In this Section, the steps involved in creating the surrogate model for extracting
the hemodynamics are detailed. The workflow of the procedure considering the
validation of the predictive ability of the meta-models is summarized by Figure 5.1.
The validation phase corresponds to the possible application of the meta-models
created to predict the hemodynamics of a new unseen anatomy as a Digital Twin
should do: in fact, an excluded new patient is processed in the online phase and the
already available ROM is queried to assess its patient-specific blood flow dynamics.

A set of np = 36 medical image sequences, in this case, 4D flow MRI data,
is collected. Image segmentation through automatic deep learning techniques is
performed in 3D Slicer. All the models are aligned to a template mesh and mesh
morphing based on automatic detection of the deformation driving Source Points
is performed with the goal of creating a set of iso-topological meshes. Excluding
one patient per time, a statistical shape model is created using the remaining
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np − 1 models. From that, a cohort of nvp = 300 virtual patients for computing the
numerical simulation results is extracted. CFD simulation is then used to compute
the hemodynamics for the 300 generated atlases. We use the results to train a
ROM that is initially validated using a leave-one-out approach based on the atlases
generated from the statistical shape model through the linear combination of modes
derived from the PCA. A least squares fitting is executed to obtain the shape
coefficients that allow to reproduce the unseen patient and the low-order solution
is automatically extracted. In parallel, an automatic full-order CFD simulation is
computed on the excluded patient. The results of that are used as ground truth, and
full-order and reduced-order solutions are compared.

5.2.1 Dataset

A specific 4D flow MRI protocol was executed on 36 patients with ascend-
ing aortic aneurysms who had written consent. The study was registered on
https://clinicaltrials.gov (clinical registration number: NCT03817008). This imaging
technique also allowed to introduce into the surrogate model information about the
velocity at the inlet, parameter that could be directly extracted from the sequences.
This was not possible using the CT scans previously employed for the development
of growth prediction methods.

The 4D flow MRI acquisitions were performed using a phased thoracic coil on
a 3 Tesla Siemens scanner (Siemens Healthcare, Erlangen, Germany). Blood flow
dynamics information was captured in free-breathing with ECG-gating. An echo
navigator was used to account for diaphragmatic motion. The 4D flow technique
combines 3D spatial encoding, three-directional velocity encoding and cine acquisition
over time (3D + time) to generate a final image set consisting of one magnitude
and three phase difference volumes encoded in the x, y, and z directions of space.
Maxwell coefficients were corrected during reconstruction to reduce the effects of the
concomitant gradient field. Additionally, non-uniform intensity and 2D distortion
corrections were performed.

Each patient’s 4D flow MRI sequence consisted of 25 frames of the cardiac cycle
with a spatial resolution of 2 x 2 x 2 mm3 and a temporal resolution ranging from
24 to 52 ms, depending on the patient’s cardiac rhythm. The echo and repetition
time were set between 2.1-2.3 ms and 38.5-40 ms, respectively, while the field of
view (FOV) was 262-350 x 350. In order to prevent aliasing in 4D flow MRI, the
velocity encoding (VENC) was chosen considering the value set during 2D flow MRI
acquisition and adjusted as necessary. Depending on the patient, the VENC ranged
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Figure 5.1: The procedure to create surrogate models and validate their predictive ability
for patient-specific hemodynamics. The light blue offline part involves the construction
of the meta-models through model order reduction techniques. Conversely, the green
part represents the online phase, which seamlessly bridges the gap from image data to
hemodynamic predictions. The orange segment is dedicated to the comparative analysis of
full-order and low-order solutions, which is a pivotal component of the validation process.

from 200 to 800 cm/s. The duration of each scan was approximately 10-15 minutes.
In this study, the magnitude and phase images were used without any additional
post-processing after their collection. However, it is noteworthy that a very high
VENC value was needed for a patient with bicuspid valve and aortic valve stenosis
due to the high blood velocity involved. The cohort consisted of 26 men and 10
women with an average age of 60+/-15 years. Among this group, 18 patients had
BAV and 18 reported TAV.
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5.2.2 Segmentation and post-processing

This Section is briefly described since the automatic segmentation method pre-
sented here has already been discussed and applied to the same dataset by our
colleagues [340]. U-Net architectures based on convolutional neural networks for 2D
and 3D image segmentation are widely used [341]. The 3D U-Net proposed in [342]
based on up-sampling operations was used in this work. The architecture employed
3 x 3 x 3 voxel convolution kernels and batch normalization (BN) after each layer
to enhance the learning stability and performance. Following each BN process, the
rectified linear unit (ReLu) activation function was used. To establish the network
input, images were either cropped or padded based on the median size of the x and
y axes and the maximum size of the z axis across the entire database. Consequently,
the 3D U-Net input size was set to 146 x 176 x 44 voxels. The advanced methods
to determine the input hyper-parameters and assess the results quality of the deep
learning segmentation method have been explained by Marin et al. [340].

However, for the purpose of numerical simulation, the grid in output from the
U-Net is often unsuitable for mathematical calculations. It usually contains high
surface noise, holes, inlets and outlets not appropriate for the run of the simulations.
In this regard, following segmentations, the surface of the aorta was smoothed to
reduce any roughness while maintaining its essential geometric features. Any sharp
corners detected were eliminated through ten steps of Taubin smoothing. We removed
any nonphysical holes resulting from the segmentation process. The aorta was cut in
the descending segment with a cutting plane perpendicular to the centerline, 5 cm
before the diaphragm [343].

Again, Python algorithms were implemented in the 3D Slicer environment and
the VMTK and VTK libraries were used to display the segmented geometry.

5.2.3 Template mesh generation

ANSA pre-processor (BETA CAE Systems, Switzerland) was used to generate a
reference mesh for simulation that included the supra-aortic branches, which was
derived from a CT-scan (OPTIMA CT660, Siemens Healthcare GmbH) of a patient
involved in the study. This patient was the one who reported the ascending tract
diameter corresponding to the median of the dataset. The template mesh, reported in
Figure 5.2 and here named Mtemplate, consisted of three million structured hexahedral
elements, with ten high-resolution inflation layers and a total thickness of 1.5 mm
and a growth rate of 1.5. It represented the fluid domain ΥF . The outlets of the
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supra-aortic vessels have been extended to facilitate the proper flow development in
these regions. The mesh sensitivity study has already been described in [340]. The
surface mesh corresponding to the aortic wall MStemplate

was divided into named
selections to ensure local control over the model. Specifically, ΓAsA contained elements
belonging to the ascending part, ΓDA encompassed those of the descending tract and
ΓAAr included the aortic arch section excluding the three supra-aortic vessels which
belonged to three additional selections.

Figure 5.2: (A) The full mesh with the extruded supra-aortic vessel outlets. (B) A
cross-section of the model in which the hexahedral grid and the boundary layers are visible.

5.2.4 Mesh correspondences establishment

Before building the parametrized space of shape variation, correspondences
between the various anatomical models had to be ensured.

Let
{
Λi

}
i=1,...,np

represent the collection of original patient-specific aorta shapes,
with np = 36. Each shape sample Λi is a tesselated surface made up of surface
vertices. Our objective is to establish correspondence by deforming the surface
template MStemplate

referred as source mesh to all other aorta shapes
{
Λi

}
i=1,...,np

here
defined as target geometries. In this case, RBF mesh morphing, whose mathematics
had already been proposed in Section 3.2.8, can be used.

A rigid transformation Ti derived using iterative closest point (ICP) was applied
to ensure consistent alignment and orientation of the anatomical samples in the
3D Cartesian coordinate system. We aligned each geometry

{
Λi

}
i=1,...,np

to the
selected already meshed template MStemplate

from the dataset. As in Section 3.2.7,
the morphing procedure was carried out in two steps where the first step involved
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Figure 5.3: Procedure to obtain iso-topological meshes from the raw segmentations through
RBF mesh morphing.

deforming the reference mesh Mtemplate to approximate the target segmented surface
while the second step involved the complete projection of the grid surface onto
the segmented surface and the subsequent volumetric interpolation. In the first
step, Source Points were extracted on the single surface template MStemplate

and on
every segmented aortic model. The deformation of the source template occurred
by imposing the SPs calculated on it to match the SPs of the target model. They
were derived exclusively on ΓAsA, ΓAAr and ΓDA. The SPs related to the ascending
tract ΓAsA were obtained from a sampling of the splines derived from the same
geometric decomposition proposed in Section 3.2.3. The SPs regarding the arch
ΓAAr and the descending aorta ΓDA were derived from nr = 8 artificial circular
rings of kp = 10 points perpendicular to the centerline of the aorta and equally
spaced along it, as shown in Figure 5.3. Indeed, the first 2 rings of the aortic arch
contained only 6 SPs in the lower half of the tract, thus avoiding the extraction of
points belonging to the supra-aortic zone. This would have introduced inaccuracies
in deforming the template model MStemplate

. Once the models were brought closer
together through the first morphing action, the second step involved projecting all
surface nodes onto the target segmentation to match the three controlled named
selections. The supra-aortic branches, as they could not be determined from the 4D
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flow magnetic resonance images, underwent a straightforward and not controlled
deformation imposed by the RBFs motion field in the space. The cubic kernel
φ(r) = r3 was chosen as basis function. The commercial software RBF MorphT M was
used to perform the mesh morphing. Each time morphing was executed, the mesh
obtained was checked in order to exclude the possibility of degenerated cells. Once
the set of iso-topologic meshes was obtained, we computed a new initial template
in order to replace Mtemplate. We repeated a second time the morphing operations
starting from it to reduce the dependence on the initially chosen patient.

5.2.5 Statistical shape modeling

With the steps described in the previous section, from the set of aligned aortic ge-
ometries

{
Λi

}
i=1,...,np

we derived a set of iso-topological surface meshes {Mi
S}i=1,...,np

.
The matrix MS ∈ R3p×np consisted of the set of mesh nodes, with p the number of
nodes on the surface. The average MSmean was extracted by calculating the average
of all nodal positions. Using the anatomically and computationally corresponding
surface meshes, we built a statistical shape model (SSM) framework to parameterize
the complex input shape space and generate many virtual aortic atlases. This process
involves two phases: (1) projecting to the latent space and (2) synthesizing virtual
patients. In the first phase (1), the reference shape can be chosen as the average of
the shapes that generates the atlases. Subsequently, PCA acting on MS yields the
eigenvectors or shape modes {Wj}j=1,...,nSM

and the eigenvalues or shape coefficients
{λj}j=1,...,nSM

, where nSM is the number of principal components employed. Each
aorta shape can be decomposed as follows:

M̃S
i ≈ MSmean +

nSM∑
j=1

ci
j

√
λjWj (5.1)

where the coefficient vector ci represents the encoded shape. Only the first nSM

eigenvectors were selected to account for a predetermined percentage of the variance
and synthetically represent each aortic shape in the dataset. nSM can be chosen by
computing the compactness as described in Section 3.2.9.1, equation 3.39. Instead,
generalization is evaluated through the leave-one-patient-out procedure in the form
of maximum geometric deviation between the surface mesh of the excluded model
and its representation resulting from the linear combination of nSM modes from the
statistical shape model.

Concerning the second phase (2), once the shape space has been constructed,
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new unknown shapes can be generated by combining the mean shape with a set of
precomputed variations, represented as deviations from the mean shape in the shape
space. In other words, we generated novel synthetic aortic shapes by employing
deformation vectors derived from the lower dimensional space. The generation of
the atlases from the original anatomical set is performed using a tailored uniform
sampling in the space of the patient-specific parameters c. Considering that each
patient represents a point in the modal space, in the first step, the midpoint between
each pair of points is extracted. This process is repeated for 5 iterations, filling
the PCA-derived space with points corresponding to hypothetical virtual patients.
Subsequently, in a second step, this space is sampled by selecting nvp = 300 points
(virtual patients), consisting of different values of the vector c, in order to maximize
the intra-distances between them in the modal space of PCA. Figure 5.4 returns an
example in two dimensions.

Every shape mode was associated with a deformation of the surface mesh MS of
the aorta. The points of the aortic wall were thus used as Source Points for mesh
morphing, thus allowing modification of the volumetric computational grid related
to the mean template Mmean for performing atlas-based CFD simulation.

Figure 5.4: The method used to create the Design of Experiments in the simplified case of
two-dimensional modal space.

5.2.6 Computational fluid-dynamics

For each virtual patient generated from the SSM, a CFD simulation was performed
to compute the hemodynamics.

The blood was modeled as a Newtonian fluid with a dynamic viscosity of 0.004
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Pa · s, a density of 1033 kg/m3 and the flow was assumed to be laminar at the
systolic peak [266]. The Navier-Stokes equations govern the flow of the viscous and
incompressible fluid domain ΥF :

Du
Dt = −1

ρ
▽p+ ν▽2u + g, in ΥF (5.2)

▽ · u = 0, in ΥF (5.3)

with u the velocity, p the pressure, ρ the density and ν the kinematic viscosity of
the fluid. For this work, steady-state simulations were set up and the effect of the
external body forces were not considered. The equation (5.2) thus becomes:

u · ▽u = −1
ρ
▽p+ ν▽2u, in ΥF (5.4)

The simulations were performed using the SIMPLE pressure-velocity coupling
algorithm and second-order pressure interpolation method, setting a convergence
criteria threshold equal to 1.0 · 10−4.

The boundary conditions δΩ were:

• An inlet velocity condition controlled by a reduced-order model parameter
called vin. This value was derived as the maximum magnitude of the velocity
vectors calculated from the grey level of the voxels intercepted by a diagonal
plane perpendicular to the aortic wall at the valve level. A parabolic input
velocity profile was then generated from vin. It was in the range (0.7; 2) m/s.

• Four Windkessel terminal resistances at each outlet (RTBCA
, RTLCCA

, RTLSA
,

RTDA
) modelled following Les et al. [344] as:

RT = P

Q
(5.5)

where RT is a general Windkessel resistance for one of the four outlets, P is
the mean pressure and Q is the mean flow rate. Given that from the available
4D flow sequences it was not possible to directly extract the velocity across the
three supra-aortic vessels that could not be segmented for resolution reasons,
the values of resistance for DA (RTDA

), BCA (RTBCA
), LCCA (RTLCCA

) and
LSA (RTDLS

) outlets were chosen considering a flow split ratio of 70%, 20%,
5%, and 5%, respectively. The range of RT , the second physical parameter of
the ROM, required for performing the simulations, was (107; 108) (Pa · s)/m3.
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• A no-slip boundary condition at the rigid vessel wall.

The parameters stored as results were wall pressure and wall shear stress for
every atlas of the model. The literature shows how an elevated systolic pressure
exerted on the aortic wall could potentially trigger the aneurysm growth, indicating
pressure as a potential risk factor [345]. As discussed in Chapter 1, also WSS plays
a pivotal role in ascending aortic aneurysm expansion. Abnormal or disturbed blood
flow patterns could lead to fluctuations in WSS. Consistently high values of this
parameter could trigger inflammatory responses, impair endothelial function and
contribute to structural changes in the vessel wall. Once the morphing atlas shape
was obtained, if the model was non-consistent in terms of mesh quality (skewness
over the threshold of 0.95), an automatic remeshing was performed before running
the simulation and the final results in terms of wall pressure and shear were mapped
onto the surface iso-topological grid. In order to automate the laborious atlas-based
simulation processes [346] and automatize the setting of the boundary conditions
and the saving of the results, ensuring a systematic generation of extensive CFD
simulation data suitable for snapshot generation, a routine based on a journal file has
been developed. The cell-centred Finite Volume Method in ANSYS Fluent - Release
2022R2 was used to solve the governing flow equations. Each time, 4 simulations
were simultaneously parallelized on a Dell Precision 7820 workstation equipped with
2 16-cores Intel® Xeon Gold 5218 and 256 Gb RAM.

5.2.7 Model order reduction

The final step in creating a surrogate model and concluding the offline phase in-
volves constructing a reduced-order model. As previously described, ROM extraction
process requires that high-fidelity snapshots ωFOM derived from numerical simulation
are extracted.

The output snapshots ωFOM from the full-order CFD simulations can be grouped
in a matrix Ω, which can be factorized in the form:

Ω = UΣVT (5.6)

where U and V are the left and right orthonormal matrices. Σ is the diagonal
matrix containing the singular values σi . Through POD, a set of orthogonal bases
Φ =

{
ϕ1,ϕ2, ...,ϕNP OD

}
that minimizes the following Frobenius norm can be

extracted:
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min
Φ

∥∥∥Ω − ΦΦT Ω
∥∥∥2

(5.7)

The cumulative energy Ren captured by using NPOD reduced bases can be evalu-
ated:

Ren =

∥∥∥Ω − Φ̃Φ̃T Ω
∥∥∥2

∥Ω∥2 =
∑NP OD

i=1 σ2
i∑N

i=1 σ
2
i

(5.8)

where Φ̃ is the set of the first NP OD orthogonal basis.
Reduction techniques are therefore used both to extract shape parameters and

derive the physical modes of fluid-dynamic outputs.
During the online phase, interpolation methods are used to predict the reduced

coefficients according to new input parameters. The ROM solution of each new
input configuration of parameters can be represented as a linear combination of
scalar coefficients with the Genetic Aggregation Response Surface (GARS) technique
[282]. It represents a direct approach that effectively addresses these issues by
describing the relationship between input and output parameters [347]. The genetic
aggregation technique automates the selection, configuration, and creation of the RS:
it uses weighted averages of various meta-models (Full second-order Polynomial, Non-
Parametric Regression, Kriging, and Moving Least Squares) to dynamically select
the most suitable response surface for each output parameter [348]. Considering
the dependence on α, shape parameters vector (the shape modes in this case),
and β, physical parameters vectors (the inlet velocity and the output resistance),
reduced-order models are used to approximate the full-order field extracting the
low-dimensional representation over the varying geometric and physical parameter
space:

ωFOM(α,β) ≈ ωROM(α,β) =
NP OD∑

i=1
wi

√
σi(α,β)ϕi(α,β) (5.9)

where NPOD the number of modes from the POD, wi are the weights of each
reduced basis ϕi(α,β). Due to POD, the singular values of order higher than NP OD

were not considered. Since the singular values are in decreasing order, the first
modes contain more information about the approximated 3D variable than those
with higher ranks.

The reduction error, i.e. the error of the POD projection, can be described as:
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ϵPOD(α,β) =

∥∥∥ωFOM(α,β) − Φ̃Φ̃T ωFOM(α,β)
∥∥∥

∥ωFOM(α,β)∥ (5.10)

The building of a ROM is considered successful if it accurately predicts the target
variable for input combinations not present in the training dataset. A leave-one-
atlas-out procedure was performed by removing a snapshot from the dataset and
verifying the ROM capability of correctly reproducing it. Both for wall pressure and
shear stress, the value of NP OD was selected upon reaching a plateau in the curve of
the reduction error ϵPOD(α,β) obtained by increasing the number of modes.

The accuracy of a ROM-based surrogate model relies on both the quantity and
quality of the snapshots. The appropriateness of these snapshots enables the ROM
to comprehensively capture the physical behaviour observed within the parameter
space, leveraging the count of modes extracted through the POD algorithm. The
construction of a ROM usually demands hours or even days, mainly due to the
significant computational resources required for generating snapshots. However, once
built, the ROM consumption can be performed using standalone systems in almost
real-time. The validation procedure described at the end of this chapter evaluated
the accuracy of each surrogate model in predicting the desired outputs for a new
patient not previously considered.

5.2.8 ROM deployment and augmented reality

A crucial step for the spread of Digital Twin-based tools is the ability to make
virtual replicas accessible to any user. The deployment process involved the devel-
opment of a user-friendly interface, described in Appendix A that allowed users to
interact with the surrogate models without requiring an in-depth understanding of
the computational tools and their underlying mathematics. Such interface facilitated
parameter sweeps, sensitivity analyses and "what-if" scenarios, enabling users to
explore the aortic hemodynamic behaviour across various conditions. In this regard,
each meta-model was exported as a Functional Mock-up Unit (FMU) component.
FMUs are standard for packaging models and simulations so that they can be easily
exchanged and integrated into various simulation environments and software tools
[349]. They can encapsulate the full surrogate model including its equations, data
and simulation behavior. For this reason, FMUs play a significant role in the context
of Digital Twins due to their ability to be standardized, exchanged and integrated
across different simulation environments [350]. FMUs allow the use of virtual replicas
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countless times and offer the possibility of modifying and maintaining only a specific
part of the Digital Twin without rebuilding it from scratch. The FMU was thus
easily managed and interfaced with any C++ or Python-based application.

Two FMUs are exported for the occasion, one for every ROM-based surrogate
model to derive a physical output quantity: wall pressure and shear stress. The
FMUs were imported through the 3D Slicer extension for the calculation of wall
pressure and wall shear stress magnitude values.

Each FMU has as input the values of the shape weights c to build new patients
after the PCA decomposition, the resistance associated with the output pressure
and the input velocity. The outputs of the FMU were instead the modal coefficients
associated with each ROM. With the eigenvectors and eigenvalues obtained from
the POD, pressure and wall shear stress field were thus entirely reconstructed in
(almost) real-time according to equation 5.2.7.

An inverse transformation T −1
i computed from the original ICP alignment was

applied to transfer the simulation results in the original reference system derived
from the segmentation of the DICOM. The DICOM transparency was controlled to
allow the user to visualize the numerical simulation results overlaid on the medical
images. From the MRI image data, the velocity perpendicular to the inlet plane was
obtained, as shown in Figure 5.5. The maximum value was calculated and a parabolic
inlet profile was applied for the simulation, with the velocity at the center of the
profile corresponding to the maximum value derived from the image dataset. The
FMUs of the output physical quantities allowed the user to modify the input physical
parameters in order to observe what happened to the precomputed hemodynamics
when the fluid-dynamic resistance at the outlet or the inlet velocity varied, ensuring
the possibility of interacting with the underlying surrogate models.

5.2.9 Leave-one-patient-out validation

While Digital Twin technologies exhibit encouraging research findings within the
cardiovascular domain, only a restricted portion of models have made their way into
clinical application. The challenges faced encompass the requirement for heightened
validation and lack of clinical interpretability [322].

In this regard, the ability of the meta-model to represent a new unseen shape
and predict the related hemodynamics was assessed with a leave-one-patient-out
procedure. One patient per time was removed and a new SSM with np − 1 patients
was built every time. Following, a new mean template was computed by extracting
the average of the np − 1 models. The shape modes were obtained again, the set of
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Figure 5.5: Velocity detection on an inlet plane perpendicular to the valvular jet using 4D
flow MRI images. As can be seen, it is difficult to determine the supra-aortics given the
resolution of the MRI images.

virtual patients extracted and the atlases results computed. New ROMs were created
with the newly generated snapshots. Given that the equations that relate nodes and
PCA weights are overdetermined (more equations than unknowns), a least squares
fitting approach was employed to determine the shape coefficients required for the
meta-model to reproduce the excluded patient’s computational domain.

To this regard, the following system should be solved:

Ax = B (5.11)

where x is the vector containing the patient-specific shape coefficients to be sought
(the coefficient vector ci−out of equation 5.1) multiplied by the square root of the
eigenvalues, A ∈ Rn×nSM , corresponding to W of equation 5.1, is the matrix con-
taining the eigenvectors from the PCA and B is the vector containing the node to
node difference between the patient-specific mesh nodes MS

i−out and the nodes of
the average SSM template MSmean. A residual or error can be defined as:

r = Ax − B (5.12)

Since we are employing a finite number of modes, the least squares approach
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approximately solves Axls ≈ B finding x = xls that minimizes ||r||. Assuming A
is full rank and (ATA) is invertible, to find xls we minimize the norm of residual
squared setting the x gradient of the squared norm equal to zero:

xls = (ATA)−1ATB (5.13)

Once the xls vector was obtained, it was sufficient to divide each element by the
square root of the corresponding eigenvalue to obtain the modal coefficients required
to represent the desired shape in the modal basis of the PCA space. The least-squares
fitting was implemented directly inside 3D Slicer. Once the shape coefficients were
extracted, the following input parameters related to the boundary conditions were
set: an inlet velocity equivalent to the average contribution perpendicular to the
inlet plane from the 4D flow MRI sequences during the systolic peak and resistances
generated by a pressure equal to the systolic pressure obtained from the patient at the
time of image acquisition. High-fidelity simulations were performed on each excluded
patient, imposing the same boundary conditions. The error between low-order and
high-order CFD solution was derived for every left-out patient.

With regards to the left-one-patient-out validation, the maximum Euclidean
distance between the node positions of the excluded patient Mi−out

S and the node
positions reconstructed from the surrogate models through a linear combination
of modal coefficients derived from least squares fitting using the surrogate model
based on the np - 1 aortas and nSM shape modes is reported in the results section.
The simulation results from the CFD on the original left-out surface mesh Mi−out

S

and the ROM reconstructed fields from M̃i−out
S were compared extracting the errors

considering all nodal values and extracting violin plots. Concerning the error in
predicting the fluid-dynamic results, two different types of errors were calculated:
the relative ROM error erel,i−out

ROM and the absolute ROM error eabs,i−out
ROM . These errors

were defined as follows:

erel,i−out
ROM = ∥ωFOM

i−out − ωROM
i−out∥

∥ωROM
i−out∥

(5.14)

eabs,i−out
ROM = max(

∣∣∣ωFOM
i−out − ωFOM

i−out

∣∣∣) (5.15)

where ωFOM
i−out indicates the high-fidelity FOM output field (i.e. the full-order solution

of wall pressure or wall shear stress) and ωROM
i−out stands for the ROM predicted

field. Furthermore, 2 of the models with lower prediction errors and 2 with higher
prediction errors were reported in the results for both wall pressure and shear stress.
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The differences between the nodal values of the FOM and ROM fields were reported,
showing the error contours and the corresponding Bland-Altman plots.
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Chapter 6

Shape-based ascending aortic
aneurysm growth prediction

In this Chapter, we analyze and discuss the outcomes of Chapter 3. Specifically,
we examine the correlation between local shape features and aneurysm growth rate.
Subsequently, we compare the performance of the six classifiers in predicting the
growth risk class of each patient belonging to the analyzed dataset. Furthermore, we
assess and comment the regression model’s capability to predict the growth rate of
each patient.

Part of the content of this Chapter has already been published in:

• "Assessment of shape-based features ability to predict the ascending aortic
aneurysm growth", Geronzi et al., Frontiers in Physiology 14: 378, (2023) [172].

• "Computer-aided shape features extraction and regression models for predicting
the ascending aortic aneurysm growth rate", Geronzi et al., Computers in
Biology and Medicine, 162, 107052, (2023) [173].

6.1 Results

The full dataset presented a mean follow-up of 18 ± 16 months with a range
between 6 and 98 months. The population mean age at the baseline acquisition was
62.7 ± 15.5 years. 21 women (30%) and 49 men (70%) were included in the dataset.
AsAA segmentations were performed for all 140 acquisitions and the shape features
were extracted for the first exam of all patients. At the baseline, the maximum
diameter was 49.4 ± 4.1 mm whereas at the follow-up it was 51.9 ± 4.6 mm. The full
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dataset presented a median growth rate of 0.118 mm/month with an interquartile
range IQR = 0.133 mm/month.

The null hypothesis of the Mann-Whitney test establishing that GRs computed
from ECG-gated and non-gated acquisitions can be attributable to a distribution
with equal median was accepted (p = 0.045).

The local shape features reported in terms of mean value and standard deviation
were: EILR = 2.336 ± 0.323, CDR = 0.496 ± 0.052 and T = 1.213 ± 0.072.

6.1.1 Correlation local shape features and growth rate

The relationship between local shape features and the growth rate is shown in
Figure 6.1: the GR value can be inferred from the colour of each marker, ranging
from light green (indicating no growth) to bright red (representing fast growth).
A positive correlation is observed between GR and all four derived measurements.
The following Spearman’s coefficients were derived: r = 0.087 (p = 0.231) for D, r
= 0.478 (p = 1.4e-5) for DCR, r = 0.411 (p = 2.0e-4) for EILR, r = 0.311 (p =
4.1e-3) for T . A statistically significant moderate correlation between DCR and GR,
between EILR and GR and between T and GR (although weaker) is thus evident
while the shape features D does not reach the significance p-level.

6.1.2 Machine learning growth risk prediction

DTr LD LR NB SVM KNN

Accuracy (D) 88.6% 85.7% 85.7% 87.1% 87.1% 84.3%
Accuracy (D+DCR+EILR+T ) 78.8% 90% 90% 88.6% 90% 88.6%

Sensitivity (D) 33.3% 0% 0% 0% 0% 22.2%
Sensitivity (D+DCR+EILR+T ) 22.2% 44.4% 44.4% 44.4% 77.8% 55.6%

Specificity (D) 96.7% 98.4% 98.4% 100% 100% 93.4%
Specificity (D+DCR+EILR+T ) 86.9% 96.7% 96.7% 95.1% 91.8% 93.4%

LHR+ (D) 10.1 0 0 // // 3.36
LHR+ (D+DCR+EILR+T ) 1.7 13.5 13.5 9.1 9.5 8.4

LHR- (D) 0.69 1.02 1.02 1 1 0.83
LHR- (D+DCR+EILR+T ) 0.89 0.57 0.57 0.58 0.24 0.48

Table 6.1: Classification scores for the six classifiers obtained with leave-one-out cross-
validation: decision tree (DTr), linear discriminant (LD), logistic regression (LR), naive
bayes (NB), support vector machine (SVM) and k-nearest neighbours (KNN). The symbol
// indicates undefined. Best performances are marked in bold.
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Figure 6.1: Correlation between growth rate and (A) maximum aneurysm diameter D,
(B) ratio of maximum diameter and centerline length DCR, (C) ratio of external and
internal curvature line length EILR and (D) tortuosity T . The circles around the marker
edges indicate patients with two gated acquisitions in the same phase of the cardiac cycle.
The line for linear correlation with 95% fitting confidence bounds is reported, the fitting
equation provided and some of the AsAA shapes shown.

Concerning the classification, 9 patients (12.9% prevalence) were identified with
growth rates above the threshold of 0.25 mm/month. The confusion matrices are
reported in Figure 6.2 both for the diameter alone as growth predictor and for the
four shape features together. Table 6.1 reports the performance of the six classifiers
in terms of accuracy, sensitivity, specificity, LHR+ and LHR-.

Using only D as risk class predictor, four of the classifiers (LD, LR, NB and
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Figure 6.2: Confusion matrices related only to D on the first row and to D, DCR , EILR
and T on the second row for the Decision Tree (DTr), Linear Discriminant (LD), Logistic
Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), K-nearest Neighbours
(KNN) classifiers. TC means true class while PC means predicted class.

Figure 6.3: AUROC results for the Decision Tree (DTr), Linear Discriminant (LD), Logistic
Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), K-nearest Neighbours
(KNN) classifiers.

SVM) prove unable to identify high-risk patients (sensitivity = 0%). Among the
D-based classifiers, DTr reports the highest accuracy (88.6%), sensitivity (33.3%),
acLHR+ (10.1) and the lowest LHR- (0.69). Instead, the DTr specificity is 96.7%,
lower than that resulting from LD (98.4%), LR (98.4%), NB (100%), SVM (100%)
but higher than the values obtained through KNN (93.4%). Concerning the AUROC,
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LD (0.67) and LR (0.67) perform only slightly better than DTr (0.66). On the
other side, considering the four shape features together, the best performances in
terms of accuracy (90%), sensitivity (77.8%), LHR- (0.24) are given from SVM.
The specificity of SVM (91.8%) is lower than that of LD (96.7%), LR (96.7%), NB
(95.1%) and KNN (93.4%). LHR+ of SVM is 9.5, lower than LD (13.5) and LR
(13.5). Regarding AUROC, LD (0.90), LR (0.86), NB (0.84) perfom better than
SVM (0.83). The AUROC for the six classifiers is shown in Figure 6.3. It is always
superior for the classifiers with the four shape parameters as input compared to the
equivalent diameter-only based classifiers. This is also clear by analyzing Table 6.1
where, except for DTr, most of the values related to accuracy, sensitivity, LHR+ and
LHR- calculated for the classification with the four parameters outperform those of
the classification with the diameter alone.

6.1.3 Regression-based growth rate prediction

Figure 6.4: (A) SSM compactness according to the number of PCA modes used: the
symbols indicate the PCA mode for which 80%, 90%, 95% and 99% of the cumulative
variance is reached. (B) Generalisation curve when increasing the number of PCA modes.
(C) FS for selecting the PCA modes to perform SVM regression. (D) FS for the PLS
modes.
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To extract global features, mesh morphing was used on all geometries. The first
step of the method guaranteed a proper correspondence between the areas near the
pseudo-landmarks calculated on the template model’s surface and the regions in
proximity to the pseudo-landmarks identified on the target anatomy. The second
step based on the projection ensured a perfect match of the surfaces.

The statistical shape analysis was performed including all computational surface
grids.

Concerning the SSM, the compactness curve is reported in Figure 6.4 (A). The
first PCA mode alone accounted for 52.4% of the anatomical variability in the
population, whereas the first 3 PCA modes together captured 80% of the overall
variance. 90%, 95% and 99% of the compactness curve were achieved using 6, 10 and
24 PCA modes, respectively. The generalization ability is instead reported in Figure
6.4 (B) for the first 24 PCA modes. By including additional shape modes, its mean
value, representing the mean square error between shapes reconstructed by LOO and
shapes reconstructed by the SSM over the entire population, went from 2.81 mm2 to
0.52 mm2, where it tends to stabilise. In Figure 6.4 (C), the results of the F-test
for choosing the PCA modes to be used for the regression are reported. Based on
FS, the PCA modes selected as global shape features were 1, 2 and 6. Figure 6.4
(D) shows the same outputs for PLS score vectors t. Concerning the first 10 shape
modes, PLS globally reported higher FS values than PCA.

The contribution of each mode can be visualized by deforming the mean template
from low (ξ = −ξlim) to high (ξ = +ξlim) standard deviation, as reported in Figure
6.5 for the three selected PCA and PLS modes.

Hyperparameters local shape features global shape features (PCA)
Kernel size 1.72 1.89

Box constraint 0.41 1.82
Epsilon 0.008 0.039

Table 6.2: Support Vector Machine regression hyperparameters

The first PCA mode determines the position of the aneurysm along the ascending
tract. Negative weight values indicate aneurysms located closer to the root, while
positive weight values are associated with aneurysms situated more towards the end
of the ascending aorta. The second PCA mode primarily characterizes the curvature
and tortuosity of the ascending tract. In contrast, the sixth PCA mode visually
corresponds to the dimension of the aneurysm, where an increase in the weight of
this mode corresponds to an increase in size of the aneurysm. On the other hand, the
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Figure 6.5: Shape modification due to PCA modes 1, 2 and 6 and PLS modes 1, 2 and 3.
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Figure 6.6: Predicted versus true response plot for the growth rate using the three local
shape features (red), the global shape features extracted from PCA (blue) and the global
shape features derived from PLS (green).

first PLS mode seems to represent both the location and size of the aneurysm. The
second PLS mode is visually associated mainly with the diameter of the aneurysm,
while the third mode is graphically linked to the tortuosity of the ascending aorta.

The hyperparameters for the Gaussian SVM regression models derived from LOO
cross-validation are given in Table 6.2.

The regression performances in terms of R2 and RMSEreg values are the following:
R2

lsf = 0.28 and RMSElsf = 0.112 mm/month, R2
P CA = 0.42 and RMSEP CA = 0.083

mm/month and R2
P LS = 0.63 and RMSEP LS = 0.066 mm/month. The comparison

between real and predicted growth rate values for the three regression models is
shown in Figure 6.6.

Figure 6.7: Partial dependencies plots for local and global shape features.

The partial dependencies plots for the three cases are displayed in Figure 6.7.
The first plot illustrates the dependence of the Gaussian SVM regression model on
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the three local shape features. The second plot shows the influence of the selected
PCA modes on the SVM prediction. Meanwhile, the third plot returns the estimated
linear relationship between the three selected modes and the growth rate due to PLS
regression.

Moving on to Figure 6.8, the regression surface is presented, built using the
modes extracted from the statistical shape model. In comparison to the typical
linear regression of PLS, the data from partial dependencies plots are, in fact, more
challenging to interpret in the case of Gaussian regression for PCA. Specific ascending
aorta shapes are associated with portions of the surface to better understand their
relationship between shape and the estimated growth rate.

Figure 6.8: Regression surface derived from the global shape features obtained with PCA.

6.2 Discussion

In this first part of the work, we presented a method to derive and exploit local
and global shape features for ascending aortic aneurysm growth risk assessment
and for direct prediction of the aneurysm growth rate. We compared the ability of
local shape features to identify patients at high risk of aneurysm growth through 6
classifiers based on the set of local parameters together with the same classifiers based
on the maximum diameter alone. Subsequently, we employed regression models based
local and global shape features to directly estimate the future aneurysm growth rate.
The patients used for computing the shape metrics were selected from both gated
and non-gated acquisitions. To ensure more reliable results, we imposed a temporal
filtering criterion of 6 months between the first and second exams, particularly to
reduce the uncertainty in the calculation of the growth rate [351, 352].
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Patients with Marfan syndrome or other congenital degenerative wall diseases
have been excluded. This decision was made to avoid potentially spurious factors,
as these conditions could lead to rapid aneurysm growth, potentially affecting the
results.

Although both CT scan and MRA were employed, the uncertainties due to the
different imaging modalities were mitigated by applying well-defined exclusion criteria
and ensuring that only intra-luminal regions were segmented from both imaging
types. In fact, minor and non-significant differences were observed in literature when
comparing diameters obtained from these two imaging techniques [353, 354].

Upon segmentation and identification of the ascending aorta, shape features were
computed for the entire domain, encompassing the Valsalva sinuses. This inclusive
approach also allowed the investigation of aneurysms in the root region.

The obtained growth rate results are consistent with what has been reported in
literature [95, 177]. The growth rate was here derived by calculating the difference
between the maximum diameters obtained from two exams and then normalizing
it based on the time between the two exams (measured in months). It is worth
pointing out here that this assumption of linear growth is rather simplifying, as
the evolution of aneurysms is believed to follow an exponential rather than a linear
pattern over time, as indicated by [355]. According to Laplace’s law described in
Chapter 1, Subsection 1.6, the wall tension is directly proportional to the vessel
radius at a given blood pressure. Consequently, as the aorta enlarges progressively,
the growth rate should tend to increase non-linearly.

Various empirical models have been proposed to account for this exponential
growth behaviour, leveraging multiple time exams [180]. Understanding when
aortic dilatation accelerates over time could potentially enhance prediction accuracy.
However, in our study, most patients only had two acquisitions and validating
exponential growth rate laws typically requires controls over at least three different
time points [356]. Hence, for the sake of simplicity and feasibility, we opted for the
linear model.

Furthermore, it is essential to note that D′′ and D′ may be located at different
centerline levels. By determining the maximum diameter at a specific distance from
the annulus in the first exam and evaluating the diameter from the model for the
second acquisition using the same distance without searching for the maximum along
the centerline again, slightly different results in terms of growth rate would be derived.
These GR results would likely be lower or, at most, equal to the values we employed
in our analysis.
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6.2.1 Correlation local shape features and growth rate

As reflected in the data subdivision, only 9 (12.9%) patients showed a rapid
evolution. The predominance of patients with slow-growing aneurysms can be
attributed to the clinical practice of conducting a second 3-dimensional acquisition
after some months. Clinicians make this decision based on their assessment of the
patient’s clinical data, assuming that the disease will not progress rapidly and the
dilatation process will not be abrupt and dangerous. In the dataset, only 6 (8.6%)
patients report maximum diameter over 55 mm and 4 of them show a close to zero
growth rate. We suppose they did not undergo surgical treatments due to a precarious
health state or because manual diameter measurements returned values close to the
threshold for surgery, but still below it. Analysing the proposed local shape features,
D provides non-normalized local information concerning the aortic shape. DCR

offers a diameter measurement relative to a local length, which helps understand the
variations between tall and robust patients and more slender individuals. EILR, on
the other hand, returns information on the relationship between the external and the
internal curvature line, to be carefully considered in the case of wall expansion toward
the external direction of the aorta, as in saccular or root aneurysm [357]. Lastly, T
provides essential details regarding the degree of twist and contortion present in the
ascending tract, adding another dimension of understanding. Using diameter alone
as a predictor of growth may not be effective as it does not account for variations in
body size among individuals. Aneurysm growth could be significantly different for
taller and more robust individuals compared to slender subjects, making diameter
alone an inadequate predictor. The other metrics, being computed as distance or
length ratios, could consider this aspect more effectively.

It is worth noting that additional parameters like volume and surface area of the
ascending tract were excluded from the correlation analysis as they are considered
characteristic measures of vessel size rather than shape [358].

6.2.2 Machine learning growth risk prediction

The diameter-based classifiers showed relatively low performance, suggesting
again that the diameter alone, current criterion for rupture risk, fails to accurately
predict the growth, at least with respect to the data we collected.

DTr and KNN are the unique classifiers able to discern at least 2 (3 in the
case of DTr) of the 9 patients of the high-GR risk class. However, integrating
the four features together and using the same classification models, a performance
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improvement in determining true positive cases can be observed for KNN but not
for DTr (Table 6.1). The diameter-based NB and SVM classifiers report 100% of
specificity and LHR+ tending to +∞, indicating that in case of a positive result, a
patient definitely belongs to the high-risk group. However, sensitivity equal to zero
combined with maximum specificity indicates that the classifier is absolutely unable
to separate between the various classes.

Among the classifiers based on all metrics, good results are obtained using SVM.
Although the sensitivity of SVM, i.e., the correct prediction rate for high-risk patients,
never exceeds the 77.8% threshold, its accuracy, LHR+ and LHR- make it a good
candidate in terms of utility [359]. LHR- = 0.24 means that a person effectively
belonging to the low-risk group is about 4.2 ( = 1/0.24) times more likely to have a
negative test than someone whose aorta is growing faster. Since LHR+ and LHR-
do not depend on the prevalence value, they are considered robust measures of the
diagnostic capacity of the proposed classifiers.

As reported in [360], an excellent classification method should return a LHR+
higher than 10 and a LHR- lower than 0.1. Unfortunately, even if close to the optimal
value for LHR+, SVM fails to reach the ideal threshold related to LHR-.

The presence of FNs in this type of classification is critical as it could result in
patients with rapidly evolving pathology not receiving timely treatments. In this
regard, it is interesting to report the geometries related to the 2 patients classified as
FNs for the full set of shape features, whose complete segmentations are shown in
Figure 6.9. One of them exhibits aortic coarctation (also another in the dataset which
is, however, correctly identified), whereas one reports an abrupt change between
aortic arch and descending aorta, characterized by a very small radius of curvature.
These morphological anomalies, altering the pressure gradient, inevitably affect the
fluid-dynamics of the ascending aorta [361]. This could be the reason why, although
the shape features of the ascending tract are not such as to characterize the patient
as being at high risk, the disease undergoes a severe and rapid evolution over time.

Overall, machine learning classification methods prove to be valid candidates
in enhancing the prediction of ascending aortic aneurysm shapes prone to rapid
growth [362] and facilitating more personalized control and treatment plans [363].
These methods are well-suited for integrating vast amounts of data, including patient
demographics, lifestyle factors, clinical history and medical images [364]. Moreover,
ML algorithms can be used to track shape modifications in time and provide dy-
namic predictions of aortic aneurysm growth [200], enabling timely interventions.
Unfortunately, the lack of multiple 3D longitudinal data for a significant number of
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Figure 6.9: The models classified as FNs by SVM based on the four local shapes features:
the first exhibits aortic coarctation while the second shows a reduced radius of curvature
between arch and descending aorta.

patients poses a challenge to robustly validate the predictive ability of these models.

6.2.3 Regression-based growth rate prediction

By integrating the information derived from geometric decomposition, mesh
morphing, statistical shape analysis and regression, we were able to extract global
shape features potentially valuable for improving the direct prediction of the aneurysm
growth rate. The results of this study show that the partial least squares regression
model based on global shape features can outperform the Support Vector Machine
regression models based on local shape features and global shape features derived
from principal component analysis.

Concerning the initial grid, the initial patient’s model reporting the median
diameter was chosen to reduce the mesh degradation after mesh morphing [365].
This starting model is, in fact, a reasonable compromise to reach the aneurysms with
the smallest and largest diameter in the dataset without degrading the mesh too much
due to very pronounced morphing transformations. The geometric decomposition
also ensured the possibility of identifying sections perpendicular to the centerline,
enabling the creation of the splines. A fundamental requirement for building accurate
statistical shape models is the anatomical correspondence of the domains, guaranteed
from the one-to-one correspondence between the positions of the landmarks driving
the morphing on each geometry of the dataset. Since it is very complex to identify
landmarks for the isolated ascending tract, the proposed morphing method allows
associating points of the splines resulting from the geometric decomposition of the
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initial template to the same ones computed on the target aorta. This allowed better
control of the grid distortion than using purely distance-based methods in which
iterative energies stabilization and recursive smoothing techniques, i.e. not driven by
statistical information, are usually performed [202].

The SSA was performed only on the ascending tract and not on the entire
aorta because a detailed and restricted correspondence between ascending aortic
aneurysm shape and growth rate was sought. This approach ensured that any
spurious components related to other parts of the thoracic aorta was excluded. While
in other research studies [191], PCA modes were associated with the cumulative
energy of aneurysm growth over time for individual patients, in this work, the
modes indicated which shape feature within the population could be related to the
growth of the disease. The parametric 3D model offers the advantage of capturing
complex ascending aortic morphological features and the opportunity to synthetically
represent them visually and numerically using the modes. These features are difficult
to be obtained using conventional morphometric measurements [366].

In constructing PCA-based statistical shape models, the high-frequency modes are
typically discarded since considered mainly related to noise. However, they could be
significant in explaining the pathological growth associated with the disease. Despite
including shape modes up to 99% of the variability, one limitation of PCA-based
growth prediction is that there could be an excluded high-frequency mode that is
nevertheless strongly associated with growth. The compactness values obtained for
the statistical shape model are aligned with those indicated by Casciaro et al. [367].
Their study on healthy aortas revealed that a subset of only 6 modes was sufficient
to capture 84% of the variance, while a congenital aortic set required 19 modes to
capture 90% of the variability. These values are quite consistent with our findings
considering that we only selected the ascending part in building the SSM and the
variability, in our case, is consequently lower.

Furthermore, the obtained compactness and generalization outcomes fit within
the variability range reported in similar studies [210, 199]. This demonstrated the
valuable SSM ability to represent a broad population. The F-test results using the
PCA components give high importance to shape modes determining the aneurysm
location, its size and the tortuosity of the ascending tract. This agrees with the
correlation study between local shape features and growth reported in Section 6.2.1.

Only three global shape features were selected because it was the number for
which the root mean square prediction error was the lowest. In fact, using a different
number of shape features for the regression, RMSEP CA went from 0.089 mm/month
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to 0.142 mm/month and RMSEP LS went from 0.066 mm/month to 0.121 mm/month.
The selection of only three global shape features for the regression was based on

minimizing the derived root mean square prediction error of the LOO cross-validation.
Based on this dataset, the value of R2

lsf and RMSElsf and the representation of
real versus predicted response values for local shape features in Figure 6.6 indicate
that the SVM regression method is highly inaccurate in predicting the growth rate,
especially for patients whose growth is very rapid, particularly if the prediction
error is compared to the median GR of the dataset. However, results improve when
using global shape features. The RMSE was, in fact, lowered using SVM with a
combination of PCA-based shape features and was further reduced by approximately
56% from RMSElsf using PLS regression. Better results when using global shape
features compared to local shape features were already reported by Liang et al.
[199] for classifying patients whose aneurysms might burst according to numerical
simulation results. In addition, it is worth observing that partial dependencies plots
(Figure 6.7) for local shape features highlight a major dependence on DCR than
EILR and even more than T , an aspect already emerged from the results of the
correlation previously studied (Section 6.1.1).

Concerning the three PCA-based global shape features, it is evident that patients
with ξ values close to zero generally experience slower growth. On the other hand,
the partial dependencies observed from PLS analysis indicate that aneurysms located
closer to the root, with a larger initial diameter and related to ascending tracts with
high tortuosity, exhibit a tendency to grow rapidly. The elevated risk associated with
root aneurysms compared to mid-aortic dilatations has already been highlighted by
Kalogerakos et al. [368].

In Figure 6.8, the surface resulting from the regression for the three PCA modes
is reported, which can be related to the observations reported for Figure 6.7. Rapid
AsAA growth seems to be related to highly negative w1 and w2 and positive w6.
These findings align with the conclusions of Della Corte et al. [369], who noted that
a root phenotype characterized by aortic dilatation at the sinuses may indicate a
more severe level of aortopathy. In contrast, slow growth occurs for aneurysms with
values close to 0 for w1 and w2 and negative w6, i.e. for less tortuous ascending
aortas, with aneurysms located far from the root and with a smaller initial diameter,
findings consistent with what discussed in previous studies [222, 370].

Obviously, additional research is essential to deeply understand the interplay
between aortic shape, wall properties, haemodynamics, mechanical behaviour and
aneurysm growth or rupture [371].
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The integration of SSA and regression methods offers a powerful approach to
model the relationship between shapes and growth rate. Accurately identifying which
patients with AsAA will require surgery within a specific timeframe would significantly
improve the risk-benefit analyses and aid in defining surveillance protocols [372].
This distinction becomes crucial as slow-growing AsAAs may not require frequent
monitoring, while rapid-growing cases would demand close and timely observation.

6.2.4 Limitations and future works

Although this work shows that training ML classifiers based on shape features
could be a promising approach for growth risk assessment and using SSA combined
with regression models could help improve the growth rate prediction, some limitations
need to be mentioned. The most critical concerns the small dataset of patients in
this retrospective study. Classification and regression necessitate larger datasets
for a robust validation of the outcomes. With regard to this, the statistical shape
analysis requires a large population of representative training samples: the more
comprehensive the diversity between anatomical models, the higher the number of
samples required. The set of shapes that the feature space can describe is limited
to the deformation modes derived from the included cohort. Therefore, there is no
guarantee that a feature vector can accurately represent every new given anatomy.
Concerning the risk assessment, the unequal distribution of classes could then
introduce a bias towards the majority class, as classifiers usually tend to prioritize
accuracy on the dominant class. Uncertainty is introduced by using both MRI
images and CT-Scans and considering non-gated acquisition in the cohort. However,
we tried to mitigate it by including the resolution criterion, segmenting the intra-
luminal aortic region and filtering out the patients with less than six months between
two acquisitions. A robust automatic segmentation method that removes manual
corrections would then be required, thus avoiding any bias introduced by the operator
[373]. Another significant limitation concerns the already discussed linear growth
rate hypothesis. It is also interesting to consider that some patients were probably
treated between one acquisition and the following with drugs such as beta-blockers
that definitely affected the growth of the vessel over the months. In performing the
prediction, we exclusively focused on the properties of the ascending aorta shape.
We did not incorporate the patient’s valve type, despite its potential influence on
hemodynamics and, consequently, the aneurysm growth rate [374]. Probably, a
subdivision into two different subsets according to the valvular type would improve
the prediction results [284], even if Cosentino et al. showed that, especially for
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the first principal modes related to PCA, there is not a significant difference in
terms of AsA wall shape [375]. Various other factors could also be considered, such
as aortic annulus disjunction, dislocation of the coronary ostia, or possible aortic
wall thinning [376]. Furthermore, this research does not encompass the arch and
descending tract, where anatomical and functional variations could also impact the
growth of the ascending aortic aneurysm [377], as we noticed for coarctation. It
should also be mentioned that, as this study was exclusively related to the shape, we
did not consider other important features such as patient’s condition (hypertension,
presence of calcifications, diabetes) and material properties of the aorta wall [378]
which could further improve the results in terms of accuracy.

In future work, numerical simulation should be used to extract biomechanical
and hemodynamic biomarkers, complementing the information provided by the
related aneurysm shape features. Parameters such as wall shear stress have, in fact,
proven to be good candidates for predicting aortic wall weakening phenomena [379].
After further validations of the predictive capabilities through large-scale studies by
including these multiple factors and overcoming the limitations described before, the
reliability of these methods in clinical environments could be definitively established.

6.3 Findings and remarks

This work showed how to compute and exploit a set of local and global shape
features helpful in classifying patients at high risk of rapid AsAA growth and to
directly infer the aneurysm growth rate. The first results indicate that a set of local
shape features could outperform the single diameter in predicting the risk class of
each patient. Machine learning has the potential to revolutionize the management
and treatment of this critical disease by efficiently processing massive datasets and
handling complex relationships. Moreover, global shape features integrated with
regression models could be fundamental for improving the direct ascending aortic
aneurysm growth rate prediction. Specific to this work, while PCA appears to be
more suitable for exploratory data analysis and dimensionality reduction, PLS seems
to more accurately predict and model the relationships between the ascending aortic
shape and the growth rate. Shape features alone are obviously not sufficient to
predict the aneurysm growth. However, the results of this work clearly demonstrate
the importance of considering the shape in studying the evolution of the pathology.
Deepening this combination of non-invasive geometric quantification and statistical
machine learning methods and integrating these results with those derived from the
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numerical simulation could help in identifying aortic shapes potentially at risk of
aneurysm growth and could undoubtedly be helpful not only for surgery planning
but also for both the choice of therapy and the follow-up timing. Obviously, the
new shape features proposed here should not replace the diameter but complement
it to have a more detailed understanding of this complex biological problem. In
order to consider and treat these shape parameters as accurate biomarkers related
to the AsAA evolution, the predictive capacity needs to be further strengthened
by identifying and preparing more extensive prospective studies. Further research
employing 3D aneurysm anatomies and integrating predictive methods potentially
employing neural network-based architectures with vascular health indicators remains
essential to not only predict the potential growth rate but also estimate the possible
aortic shape at known future intervals.
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Chapter 7

Calibration of the mechanical
boundary conditions for a
high-fidelity thoracic aorta model

In this Chapter, we present and discuss the results of the calibration procedure
of the mechanical boundary conditions of the aorta, taking into account the heart
motion and the interaction with soft tissue and spinal column, proposed in Chapter
4. Subsequently, the differences between the structural model and the fluid-structure
interaction model are analysed and the effect of the boundary conditions on strain is
described. Lastly, an in-depth examination of the comprehensive limitations inherent
to this study is performed. Part of the results discussed in this Chapter has been
published in:

• "Calibration of the mechanical boundary conditions for a patient-specific thoracic
aorta model including the heart motion effect", Geronzi et al., IEEE Transactions
on Biomedical Engineering, (2023) [254].

7.1 Results

7.1.1 Calibration

Following a thorough development of the fluid-dynamic and structural models,
the iterative calibration procedure based on Levenberg-Marquardt was completely
automated, ensuring reproducibility and eliminating any potential user errors. During
the final five iterations of the ICP algorithm, rigid displacements of less than 0.08
mm were observed, confirming that the FE model and the splines were accurately
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aligned. We verified the fitting quality related to the 3-parameter Mooney-Rivlin
model based on the derived experimental material properties. It returned RMSEMAT

= 1840 Pa and R2
MAT = 0.994.

Figure 7.1: Evaluation of the normalized loss function f(pIT ), maximum DIT
M and mean

DIT
m neighbour distance for each of the iterations of the Levenberg-Marquardt optimisation.

During each iteration of the Levenberg-Marquardt optimization, a new zero-
pressure state was computed using the patient-specific diastolic pressure field Pw(tdiast),
which was in a range between 9330 Pa and 9730 Pa (70 mmHg and 73 mmHg) de-
pending on the aortic region.

The calibration process was successfully performed on the analyzed patient and the
loss function f(p) was reduced by approximately 34% after 19 iterations, decreasing
from 0.343 m to 0.227 m. The entire calculation required a total of 32 hours. The
algorithm stopped due to the second optimization ending condition. At the end
of the calibration, the value of the parameters governing the mechanical boundary
conditions was p = [0.6, 0.02, 0.04, 1.5 · 104 Pa/m]. The cost function assessment
during the procedure, normalised with respect to the value of the first iteration, is
reported in Figure 7.1. In the same Figure, for each iteration, the maximum and
mean normalized neighbour distance between the splines, denoted as DIT

M and DIT
m ,

respectively, are reported. These quantities are determined as the maximum and
mean values of the vectors containing the evaluation of (4.10) on each point. The
maximum distance between the points belonging to the two sets of splines decreased
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Figure 7.2: Moving to the right: ascending part after the zero-pressure calculation, deformed
vascular structure and error in terms of neighbour distance on the cine-MRI-derived splines
during the early systole, peak systole, late systole and early diastole for (A) the baseline
model above, (B) the calibrated model below. It can be observed how the error is reduced
mainly in the anterior-lateral zone of the initial ascending part during the peak and late-
systolic frames.

from 8.64 mm to 6.37 mm, and the mean distance reduced from 2.24 mm to 1.83
mm. At the conclusion of the calibration, the maximum error in terms of distance
between the points belonging to the two sets of splines was observed in the region of
the sinotubular junction during the phase immediately following the systolic peak
(Figure 7.2), when the displacement of the annulus was more pronounced.

In performing each LM iteration, the number of simulations required to obtain
the zero-pressure state varied from 4 to 15, in accordance with what reported in
[311]. In general, as the spring stiffness decreased, a higher deformation corresponded
and consequently a higher number of iterations to reach the convergence criterion
was required. In fact, the baseline model controlled by the initial guess p1 required
an average displacement on the ascending aorta of 1.1 mm to reach the unloaded
configuration, whereas the final calibrated model, whose mechanical BCs were
governed by p, distinguished by globally lower-value parameters, presented an
average displacement of 5.4 mm.

114



7.1 Results Calibration boundary conditions high-fidelity modeling

The Response Surface, computed to investigate the area surrounding the initial
guess, along with the three Design Points used to confirm the calibration outcomes, is
shown in Figure 7.4. Being a 4-parameter space, its three-dimensional representation
is derived by holding two of these parameters constant. A high quality and prediction
ability was ensured by R2

RS = 0.998, RMSERS = 1.8 ·10−5 m and RMAERS =
2.91%. DP1 and DP3 returned the same minimum f(pDP1) = f(pDP3) = f(p) =
0.227 m after 21 and 16 iterations with pDP1 = pDP3 = p while DP2, after 25
iterations, returned a new vector pDP2 = [0.64, 0.04, 0.04, 1.4 · 104 Pa/m] for which
f(pDP2) = 0.232 m, 2.2% higher than the minimum previously obtained. The
impact of the calibration on the aortic motion is shown in Figure 7.5: the relative
displacement of the computational grid in systole compared to the configuration in
late diastole is shown for the baseline model simulated with the initial guess p1 and
for the model at the end of the calibration controlled by p.

7.1.2 Strain assessment and fluid-structure interaction

In Figure 7.6, the von Mises equivalent strain contours are shown to display the
BCs calibration and the annulus motion effects on this outcome. The maximum
strain values are instead listed in Table 7.1. Introducing the heart motion in diastole
did not alter the strain contours and their respective maximum value. However, they
differed depending on the calibration effects. At the systolic peak, on the other hand,
the maximum strain in both the baseline case and the model with tuned parameters
increased due to the application of the annulus motion.

The resolution of the fully-coupled fluid-structure interaction analysis employing
the model with the Robin BCs governed by p required 108 hours. The streamlines
for the velocity field during six different cardiac phases derived from fluid-structure
interaction analysis are reported in Figure 7.3. Comparing the displacement derived
from strongly-coupled FSI and structural simulation (Figure 7.7), the maximum
error between corresponding nodes DMAXFSI = 0.64 mm was identified for a node
close to the annulus during the systolic peak. Precisely at this phase, the solutions
of the two methods showed differences in deformation patterns near the lower part of
the sinuses of Valsalva. RMSEFSI was equal to 0.12 mm in late diastole and 0.19 mm
at the systolic peak, quantity representing the maximum during the entire cardiac
cycle. The cost function evaluated on the FSI deformed wall returned fFSI(p) =
0.237 m, value 4.4% higher than f(p).
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Figure 7.3: Streamlines during 6 different cardiac phases obtained from the fluid-structure
interaction analysis accounting for the heart motion.

7.2 Discussion

7.2.1 Calibration, strain assessment and fluid-structure interaction

This study introduces an approach for performing a patient-specific calibration of
the parameters governing the mechanical boundary conditions of a high-fidelity model
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Figure 7.4: Response Surface shown by fixing 3 different values of WX and KST . The 16
DPs are plotted and DP1, DP2 and DP3 used to test the method are indicated.

Table 7.1: Maximum von Mises equivalent strain: effect of calibration (C) and heart motion
(HM).

Phase HM: no C: no HM: yes C: no HM: no C: yes HM: yes C: yes

Diastole 0.051 0.051 0.119 0.119

Systole 0.131 0.294 0.251 0.262

of the thoracic aorta. The whole preparation of the workflow is time-consuming. It
requires much effort as several steps, with the exception of the optimisation using
Levenberg-Marquardt, are still manual: in fact, the preparation of the simulation
settings, the segmentations refinements, the annulus tracking as well as constructing
the FE and CFD models still require multiple user interventions.

The Robin BCs introduced in this work have two main advantages: from a
clinical standpoint, they restrict the aortic movement and dilation, improving the
correspondence with the motion derived from the images, whereas on computational
side, they affect the movement in regions usually left unconstrained (the aortic wall)
and relax sections often strongly constrained (the inlets and outlets) where the use
of constraint equations for the cardiac motion allows the aorta to expand and deform
under the pressure load. The decision to calibrate the whole set of BCs by exploiting
only the ascending aorta domain ΓAAw is due to two reasons: first, the data on the
material properties were available for this region and second, the acquired cine-MRI
planes do not allow for accurate identification of displacements in the arch and
descending aorta due to partial volume effect or to the absence of the considered
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aortic part in the sequences. Furthermore, the motion of the descending aorta is
generally less pronounced, often yielding displacements of smaller magnitude than
the cine-MRI resolution [380, 381].

Figure 7.5: Relative systolic-diastolic displacement contours and diastolic model shown
in background for (A) the case with the initial parameters guess and (B) the calibrated
model.

Each iterative step of the calibration procedure required solving an inverse
problem to determine the zero-pressure state. The diastolic pressure field derived
from the CFD and applied in this steady-state simulation was consistent with the
patient’s blood pressure detected during the MRI scanning. The maximum difference
between each value of the pressure field and the measured pressure was 2 mmHg,
in complete agreement with the discrepancies identified by Chemla et al. [382]
between aortic diastolic pressure and peripheral diastolic pressure. The achieved
unloaded configuration exhibited major displacements in the ascending aorta domain
primarily due to the weakest stiffness values introduced by the Robin boundary
conditions and modeled in Equation (4.5). The sets of springs connected to the three
upper branches representing the upstream vasculature had the additional benefit
of avoiding instabilities when solving the simulation for the zero-pressure state
computation. These springs further constrained the displacements in the adjacent
regions, contributing to stabilising the solution of the iterative inverse problem.

The ending criteria threshold values related to the LM optimisation were in-
tentionally not set too strictly for two main reasons: first, if lower, these would
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Figure 7.6: Effect of imposed annulus motion and calibration on strain contours for the
ascending aorta in late diastole (top) and at the systolic peak (down).

have significantly increased the number of iterations, resulting in excessively long
computation times. Second, at each evaluation of the cost function, the different
residual error introduced by the inverse problem to obtain the zero-pressure state, an
iterative method as well, could have been even higher than the potential enhancement
determined by the new iteration of LM. This clarifies the rationale behind estab-
lishing a stringent threshold (0.1 mm) for the zero-pressure convergence: it helps to
reduce the influence of the error introduced by the unloaded state computation on
the final cost function assessment.

In each iteration of the workflow, the distance between the points belonging to the
segmentation-derived splines and those to the simulation-derived splines, expressed
by (4.10), varied across the cardiac cycle. The maximum error emerged during
systole, the cardiac phase characterized by the highest dilation and displacement of
the patient’s vessel wall [383]. This trend is reflected by the denser frames sampling
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φ in systole compared to that in diastole [384, 385]. The loss function accounted for
all selected frames φ. However, the most significant impact on reducing its value
following parameter adjustments was attributed to those corresponding to systole,
as can be observed from Figure 7.2. Reducing the contribution of the diastolic phase
effect on the error proves challenging due to segmentation bias, which introduces a
residual distance between the 3D computational model and splines derived from cine-
MRI. This error is mainly observed in the medial part at the end of the ascending
aorta close to the pulmonary artery and in the antero-lateral zone where the vena
cava comes into contact with the aorta. Such vessels close to the aorta, in fact,
introduce uncertainties in the segmentation of 2D images.

Figure 7.7: Distance between each node of the wall of the structural domain in fully-coupled
FSI simulation and the corresponding node in structural simulation for the calibrated
model.

At the end of this patient-specific calibration, the cost function decreased by 34%
from its initial value. It is worth pointing out that this could not be reduced to
0 due to the limited control provided by only 4 variables governing the complete
set of mechanical boundary conditions. To achieve better model control, additional
parameters would need to be introduced. The inspection of the three Response
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Surface representations (Figure 7.4) seemed to suggest a minimum for low values of
WY and WZ , in agreement with the minimum achieved through the LM algorithm.
Moreover, the repetition of the workflow using the 3 additional Design Points as
initial guesses contributed to showcasing its partial robustness in tackling this highly
nonlinear problem.

Due to the choice of the initial guess, the average nodal displacement required
to attain the unloaded state for the model with tuned Robin BCs exceeded that
of the baseline model. This observation has already been reported by Baumler et
al. [279], who noted a significant disparity in deformation necessary to achieve the
zero-pressure state when considering or omitting the Robin boundary conditions in a
fluid-structure interaction model of a dissected aorta. The comparison between the
baseline and calibrated model in Figure 7.2 graphically shows a clear difference in
terms of relative systolic-diastolic displacement after the calibration of the Robin BC
values: the model generated with the initial parameter configuration was strongly
constrained and the motion applied at the level of the annulus was propagated
exclusively to the nearby elements up to the central part of the Valsalva sinuses. In
contrast, after the calibration, the entire ascending aorta absorbed the impulse caused
by the heart muscle. Additionally, it is noteworthy that the motion imposed by the
dummy node resulted in a maximum relative systolic-diastolic displacement of 6.9
mm, mainly downwards at the level of the aortic root. This aligns with discussions
found in the literature [386, 387].

Having made the kinematics of the vessel more consistent with the information
derived from the cine-MRI sequences allows the model with the tuned BCs to
reproduce the real displacement and deformation more faithfully than without
calibrated parameters. This improved faithfulness in reproducing the behaviour
potentially leads to a better strain assessment, bolstering the precision of the model
in evaluating the rupture risk related to pathologies like ascending aortic aneurysms.
Figure 7.6 illustrates the impact of the boundary conditions on the von Mises strain
distribution. In diastole, no difference is observed in the strain field when applying
the heart motion, contrary to the calibration as the parameters of the Robin BCs
change. For this specific scenario, the strain is higher after the calibration since the
zero-pressure state results more compressed. Turning to systole, when taking the
baseline case without annulus movement as reference, the heart motion produces
a localised increase in strain exclusively for the mesh elements belonging to the
annulus. Removing the heart motion but calibrating the 4 parameters of the Robin
BCs makes the strain higher due to the new zero-pressure configuration. If both
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heart motion and calibration are applied, the strains become even more elevated.
These observations are in accordance with the findings of Beller et al. [259].

Comparing the iso-topological surface meshes in structural and fully-coupled FSI
simulation (Figure 7.7), differences are also evident in diastole. This occurs because
the zero-pressure grid, whose nodal positions are the same for both the simulation
approaches, was derived using the diastolic pressure field computed through rigid-wall
CFD simulation and the use of deformable walls results in slight variations of the
pressure load in FSI simulation modifying the final position achieved in diastole. In
simpler terms, the diastolic pressure field at the wall of the FSI model differs from the
field Pw(tdias) obtained at the wall of the CFD domain, consequently introducing a
bias in terms of deformation. In any case, the most significant difference between the
two deformed walls occurs at the systolic peak. Although this may seem high (0.64
mm), it can be observed from Figure 7.7 that the major errors are all concentrated
in the area close to the annulus. This may occur because of the control method of
the annulus movement based on the constraint equations proposed in (4.8) through
which we did not impose a displacement to each individual node of Ψinlet but instead
controlled the overall behaviour of the entire node set with respect to the dummy
node. When comparing the two simulations exclusively within the calibration domain
ΓAAw, thereby excluding the initial elements close to the annulus, as shown in Figure
4.3 (B), the maximum error in systole is reduced to 0.24 mm. This difference between
the two methods is in agreement with what was reported in [388]. The value of the
cost function fFSI(p) demonstrates that, at least for this patient, calibrating the
model using a pressure field and structural simulations yields tuned parameters that
enhance fidelity even for the FSI model. Moireau et al. [280] correctly emphasized
the substantial computational burden of calibration methods based on fluid-structure
simulations that aimed at minimizing the discrepancy between the computational
model and the image-derived information, defining it as a major drawback. Our
approach stands as a viable alternative since it exploits the decoupling of the physics,
providing a considerable gain in computational time. In fact, all the calibration
procedure is based on structural simulations with a much lower computational cost
when compared to fully-coupled FSI simulation.

Given the challenges in non-invasively estimating thoracic aorta tissue properties
using current imaging methods [389], where accurate insights are typically limited
to highly invasive procedures or ex-vivo techniques [390], we chose to showcase the
consistency of the calibration workflow using a model derived from a patient who
underwent surgical repair for aneurysm. In fact, the wealth of data collected for
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this patient enabled us to extract personalized material properties data, reconstruct
the 3D model, replicate the valvular inlet shape and retrieve the displacement and
deformation of the vessel during the cardiac cycle. Nevertheless, the same procedure
could be adapted to healthy aortas by adding new material-related parameters: in
fact, this workflow can be extended to any patient if data to reconstruct the FE model
and extract the vessel motion are available. The proper execution of the workflow is
independent from the type of valvular inlet: a different shape would mainly influence
the CFD-derived wall pressure field Pw(t), particularly in the ascending aorta. It is
also worth noting that the calibration methodology proposed here could be similarly
applied for the abdominal aorta [391] or for other organs such as the heart [392]
or the diaphragm for motion compensation in the cancer radiation therapy [393].
Finally, although cine-MRI was used to calibrate the model, this procedure could
be replicated with every image set that considers dynamic acquisitions during the
cardiac cycle, such as multiphase-CT or even 4D flow MRI. These techniques offer
information and time-resolved data on the aortic motion, enabling the description
of phenomena like aortic rotation at the annular level. Nonetheless, we consider
cine-MRI data as a well-balanced compromise between spatial resolution and image
quality of CT scan and good temporal accuracy of 4D flow MRI [394]. In this regard,
Shidhore et al. [395] used information from 4D ultrasound images to estimate stiffness
parameters for the Robin boundary conditions in a murine aorta FSI model across
three macro-areas. Despite its micron-level spatial resolution, 4D ultrasound imaging
is not currently part of clinical practice for analyzing ascending aortic aneurysms
since the anatomical position of the ascending aorta surrounded by the thoracic cage
and the interference of intra-pulmonary gas limit image acquisition [396]. However,
2D acquisitions are sometimes carried out for screening purposes. Nevertheless,
they rely on user-dependent probe placement and an accurate determination of the
position of the aorta, essential for effective calibration, remains challenging.

7.2.2 Limitations and future works

This work acknowledges several limitations that warrant discussion. To begin,
the procedure is here applied exclusively to one patient. Extending the methodology
to encompass other cases would be valuable, assessing the consistency of the derived
stiffness values and exploring potential inter-patient variability. Secondly, the control
of mechanical boundary conditions was achieved by employing only 4 parameters
pertaining to the stiffness of the Robin boundary conditions. Further investigations
are essential to understand whether introducing more parameters could enhance
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model accuracy and consequently improve fidelity. We have then assumed the
damping factor η constant and equal in the three directions of space, modelling
choice whose effect should be additionally explored. Moreover, the relationship that
changes the stiffness of the springs according to the distance to the spine was assumed
to be linear; alternative mathematical formulations need to be tested to assess how
they affect the simulation results. Another limitation concerns the simplification of
the model: we did not consider the effect of the coronary arteries and the 3D valvular
shape on the aorta simulation and we imposed a constant thickness and isotropic
material properties for the entire vessel. It is also evident that the constitutive
laws developed to model ΓW are simplified, albeit without disrupting the procedural
workflows. The model also overlooks factors like the self-balancing internal residual
stress in the zero-pressure state [397] and the different types of material properties
across the three layers (intima, media and adventitia) of the vessel wall [398]. Finally,
it should be stressed that the robustness of this calibration method was only partially
verified for the analyzed patient. When employing this method, careful selection
of parameters for the Levenberg-Marquardt algorithm is necessary to ensure its
applicability across multiple subjects.

The most important future extension of this study involves its application to a
large dataset to effectively demonstrate the robustness of the procedure and that
high-fidelity models calibrated with such methods can indeed generate reliable Digital
Twins based on accurate data reproducing the real behaviour of the aorta [144, 240].
The possibility of improving the model fidelity by including various morphological
and functional aspects could accelerate the comprehension of the complex biological
process related to the aneurysm growth and rupture [399]. Extending this workflow
to several patients, however, requires automation of specific laborious and time-
consuming steps such as image segmentations and model generation. Overcoming
the limitations previously described, this procedure, here presented as a proof of
concept, could be used to return a patient-specific model able to provide an accurate
estimation of the risk for this condition, an essential feature when aiming to create a
DT with predictive abilities. Combining these boundary condition parameters with
shape parameters derived from statistical shape modelling and reduced-order models
could guarantee the deployment of more reliable and easy-to-use models in clinical
practice [400]. In addition, the high-fidelity model proposed here could be exploited
to perform numerical simulation of vascular replacement prostheses for the ascending
aorta [401] but also for the analysis of thoracic endovascular procedures such as wire
insertion for trans-catheter aortic valve implantation [402].
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7.3 Findings and remarks

In this study, we presented a novel method for calibrating 4 parameters governing
the mechanical boundary conditions of a high-fidelity thoracic aorta model, taking into
account the motion imposed by the heart on the aorta at the level of the annulus. On
fluid-dynamics side, the use of a closed loop circulation based on lumped parameters
provided quasi-patient-specific boundary conditions. Concurrently, on the structural
side, the combination of hyperelastic material properties grounded in experimental
data with an iterative zero-pressure calculation allowed to more faithfully reproduce
the vessel deformation behaviour in response to the blood pressure. This holds
particular significance for understanding the evolution of pathologies that necessitate
a deep analysis of wall dynamics, such as aneurysms and aortic dissections. Although
further extensions are required, the application of the calibration procedure to a
patient with an aneurysm demonstrated the possibility of enhancing the model fidelity,
achieving a closer correspondence with information derived from the available image
data. The procedure presented in this work has to be tested on a large dataset
with the long-term goal of providing accurate and patient-specific analyses, thereby
generating a wealth of information that can be integrated to create a reliable Digital
Twin with faithful predictive capabilities for assessing the risk of cardiovascular
diseases and delivering personalized therapeutic solutions.
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Chapter 8

Real-time hemodynamics
prediction based on surrogate
modeling

In this Chapter, we discuss the outcomes derived from the hemodynamic prediction
through surrogate modeling techniques, whose pertinent methodologies have been
described in Chapter 5. Emphasis is placed on the leave-one-patient-out cross-
validation conducted to achieve real-time simulation results on new unknown patients
in an augmented environment easily accessible by the clinicians. Such an environment
represents a pivotal component in realising active or semi-active Digital Twins within
the healthcare domain. We refrain from delving into the specifics of the segmentation
results, as they have been previously disseminated in collaborative works with our
esteemed colleagues at the University of Burgundy and the University Hospital of
Dijon, France. We mainly focus on evaluating the error of the surrogate models in
reproducing new unseen patient-specific geometries and representing the wall pressure
and wall shear stress magnitude field. Finally, we explore the limitations inherent
the proposed approach as well as potential future developments and improvements.

8.1 Results

8.1.1 Hemodynamic prediction and validation

The performance of the U-Net in segmenting the aortas has previously been
assessed by Marin et al. [340], wherein the automatically segmented anatomies
were compared to the ground truth geometries achieved through meticulous manual
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segmentation. In that case, the evaluative process incorporated metrics, notably the
Dice coefficients and the Hausdorff distance.

Figure 8.1: The PCA components with the explained variance. The green histogram
represents the variance of each PCA shape mode. The blue curve describes the compactness,
i.e., the cumulative variance.

Within our research, a comprehensive statistical shape model was established,
encapsulating all np = 36 geometries derived from the dataset. The compactness
properties were studied and subsequently a value of NP OD for determining the
number of bases to use in the POD was derived. The ICP-based rigid registration
was performed to subsequently derive the corresponding mapping between the
reference template and the set of aortic geometries, paving the way for shape
parameter extraction. Notably, during the terminal iteration of the ICP, the most
pronounced rigid displacement observed was 0.26 mm. It occurred for only one
model in the dataset. The others exhibited displacements in the final iteration below
this value. RBF mesh morphing proved efficient in generating different atlases valid
for numerical simulation. In the lower dimensional space derived from PCA applied
to the 36 discretized aortic models, 80% of the total variability was reached using
4 shape modes, 90% of the variance with 7 shape modes and 95% with 10 shape
modes. Remarkably, a comprehensive 99% of the total variance was captured using
19 shape modes, as depicted in Figure 8.1. The first PCA mode accounted for a
significant 37% of the total variability. Subsequent modes demonstrated diminishing
contributions: 20% by the second, 14% by the third, and 10% by the fourth mode.
From a simple visual analysis of Figure 8.2, it is discernible that the first mode
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Figure 8.2: Effect of the PCA shape modes 1,2,3 and 4 on the full aorta domain.

was predominantly associated with the overall size of the aorta. The second mode
portrays the length variance of the ascending and descending tracts. Mode 3 was
related to the amplitude of the aortic arch, effectively modifying the distance between
ascending and descending tract. The fourth mode primarily characterizes the angular
divergence between the arch and the descending tract. To exploit a surrogate model
that accounted for approximately 99% of the shape variability, nSM was set to 19,
i.e., 19 geometrical parameters corresponding to the SSM shape coefficients inside
the vector c of eq. 5.1 were used as input for the reduced-order model. Consequently,
a comprehensive set of nvp = 300 permutations, spanning 19 varied shape modes,
were employed to structure the Design of Experiments. This was pivotal in deriving
the essential snapshots to construct the ROM.

The generalization ability was directly assessed during the leave-one-patient-

128



8.1 Results Real-time hemodynamics prediction

Figure 8.3: Mesh reconstruction error evaluated in terms of maximum Euclidean distance
between the nodes of the mesh reconstructed from the PCA sub-space and the corresponding
nodes of the original left-out mesh.

Figure 8.4: Spatial distribution of the error evaluated as distance between corresponding
nodes between predicted and original computational meshes for two of the best-predicted
cases and two of the worst.

out validation procedure. In this regard, the maximum error in reconstructing
each left-out patient through the combination of PCA shape modes was evaluated.
We computed the maximum Euclidean distance between corresponding nodes of
the original mesh and the reconstructed grid, reported in Figure 8.3. Here, every
square denotes a patient, and the colour of each square is related to the inaccuracy.
Discrepancies observed spanned from 3 mm to 13.6 mm. For illustrative purposes,
two optimally-reconstructed patients (#2 and #14) alongside two patients that posed
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challenges for accurate representation by the SSM (#10 and #34) during validation
are showcased in Figure 8.4.

Figure 8.5: (A)-(B) Relative and absolute ROM error related to wall pressure and (C)-(D)
wall shear stress for each left-out patient.

All the CFD simulations performed on the atlases were successfully executed
until convergence. For cases exhibiting Skewness exceeding 0.95, remeshing was
applied and the derived results were mapped onto the aortic wall. As for the shape
modes, the assumption on how many physical modes to use in reconstructing the
output fields was performed exclusively on the reduced-order model encompassing
all np = 36 patients. nP ODP

= 14 physical modes were chosen to describe the
pressure at the wall. This choice was informed by the observed plateau, approaching
an error of approximately 1% in ϵP ODP

(α,β) throughout the leave-one-atlas-out
validation process that utilized nvp-1 snapshots. On the other side, during the same
validation procedure, the error trajectory ϵP ODW SS

(α,β) stabilized at 20% when
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employing 21 physical modes. Despite increasing the number of adopted physical
modes, no substantial improvements were observed in reproducing the wall shear
stress magnitude field.

Figure 8.6: Violin plots displaying the wall pressure field reconstruction error during the
leave-one-patient-out validation procedure.

The relative ROM error erel
ROM and the absolute ROM error eabs

ROM for both the
pressure and the wall shear are reported in Figure 8.5. The normalization based on
the FOM field for the relative error ϵF OM(α,β) allows identifying specific patients
where the surrogate model encounters the major difficulties in correctly representing
the desired outputs. An average relative ROM error of 1.3% was observed for the
pressure, while it reached 42% for the wall shear stress.

In the process of evaluating wall pressure during the validation phase, discrepancies
in the representation returned by the surrogate model are illustrated for all omitted
patients using violin plots, as seen in Figure 8.6. The results show that the wall
pressure prediction of the surrogate model is quite consistent with the high-fidelity
FOM simulation results. Notably, the same figure highlights a peak deviation of
approximately 10 mmHg. This was detected at a few nodes exclusively for one patient
(#10), who concurrently manifested considerable errors in geometric reconstruction.
As already performed for the geometrical prediction, two models with low errors
(#15 and #31) and two models with high errors (#11 and #23) have been selected
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for reporting the contours of the pressure in Figure 8.7. The absolute value of
the node-to-node difference in terms of pressure between FOM and ROM is also
computed and Bland-Altman plots are reported.

Figure 8.7: Pressure field contours from the FOM simulation (first row), the ROM simulation
(second row), absolute value of the difference between FOM and ROM field (third row)
and Bland-Altman plots (fourth row) for 4 different patients belonging to the dataset.

The same has been done for the wall shear stress magnitude, as shown in Figure
8.5 (C) and (D). This output parameter exhibited considerably more consistent
relative ROM errors when estimating the left-out patient’s WSS if compared to
pressure output. Figure 8.5 (D) and Figure 8.8, reveal that these discrepancies
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reached peak values of approximately 55 Pa. For clarity, two quite good predictions
(#19, #26) and two significantly inaccurate reconstructions (#10, #34) are presented
in Figure 8.9, inclusive of the absolute differences and the accompanying Bland-
Altman plots. Overall, these findings underline the imperative to refine the wall
shear stress predictions within the surrogate model, especially if future integration
into a real-time responsive Digital Twin framework is envisaged.

Figure 8.8: Violin plots displaying the wall shear stress magnitude field reconstruction
error during the leave-one-patient-out validation procedure.

The computational time required to extract the fluid-dynamic results using
the surrogate models based on the non-intrusive ROMs was on the timescale of
milliseconds, much less than the approximately 5 minutes demanded to compute
the FOM steady-state solution. When navigating the comprehensive process, from
the initial medical images to the integration of a 3D model showcasing the desired
fields within an augmented reality environment, the alignment phase utilizing the
ICP methodology emerged as the most time-intensive part, lasting, in fact, several
seconds.
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Figure 8.9: wall shear stress magnitude contours from the FOM simulation (first row), the
ROM simulation (second row), absolute value of the difference between FOM and ROM
field (third row) and Bland-Altman plots (fourth row) for 4 different patients belonging to
the dataset.

8.2 Discussion

8.2.1 Hemodynamic prediction and validation

Several studies have investigated the fundamental contribution that CFD could
provide to evaluating the thoracic aorta hemodynamics [403]. However,the adoption
of this technique in clinical practice remains limited, predominantly owing to the
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prohibitive computational expenses previously detailed. The research presented
herein delineates a methodology for rapidly deriving hemodynamic insights from
two surrogate thoracic aorta models. This was accomplished by an innovative
fusion of deep-learning segmentations, mesh morphing techniques, statistical shape
modelling, computational fluid-dynamics and model order reduction. We successfully
proposed a combination of methods that streamline and expedite the process of
transitioning from clinical images to patient-specific hemodynamic assessments. The
meta-models based on non-intrusive reduced-order models allow for a quick prediction
of the numerical simulation results, enabling one of the fundamental prerequisite for
creating active or semi-active Digital Twins. Surrogate modeling can contribute to
studying the dynamics of the aneurysm growth and, if properly validated, making
predictions to support decision-making in a clinical environment. Compared to the
work proposed in literature [334, 339], we built a comprehensive pipeline to augment
medical image information in a single environment and proposed a cross-validation
method based on patient exclusion.

The displacement returned from the last iteration of the ICP indicated the
achievement of a good alignment of the anatomical models

{
Λi

}
i=1,...,np

with the
computed template. To train the underlying reduced-order model with CFD-derived
results, we constructed an exhaustive dataset by prompting the statistical shape
model to synthesize novel virtual patients, rooted in authentic patient-specific ge-
ometries. When compared to optimal space-filling approaches, the proposed method
for extracting samples from the PCA space allowed generating atlases with modal
coefficients resided within the confines determined by the nSM -dimensional polyhe-
dron identified by the minimum and maximum component of the vector cj with
j = 1, ..., nSM , thus reducing the presence of limit configurations with particularly
complex and likely unrealistic anatomies. Nonetheless, this approach had a drawback;
it restricted the capacity of the model to faithfully recreate exceptionally atypical
shapes situated beyond the modal space identified by the available shape coefficients.
It is worth noting how the SSM constructed here for the entire thoracic aorta requires
fewer modes to capture 99% of the represented variability. This contrasts with
the SSM described in Chapter 6, Section 6.1.3, exclusive for the ascending aorta
part. The rationale for this disparity stemmed from the more pronounced smoothing
implemented in conjunction with 4D flow-derived segmentations. Consequently, the
surface anomalies prevalent in the aortic walls, identified by the upper-frequency
modes within the PCA spectrum, were here attenuated.

During the leave-one-patient-out validation, the previously created SSM is queried
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to represent the grid of the omitted patient. Once the shape coefficients are obtained
through least squares fitting, the mean template is tailored to align to the new
input anatomy, and the error quantified by the node-to-node distance is returned.
Typically, patients with more complex geometric reconstructions resulting in higher
errors correspond to more peculiar and non-standard anatomical features. A decision
boundary, defined by a specific distance value, could be identified for systematic error
evaluation. If the resultant distance remains below this demarcation, the solution
derived from the ROM is accepted. Conversely, if this criterion is not met, an alert
prompts the recommendation of computing a new FOM simulation through high
performance computing (HPC) strategies. The unknown iso-topological model in
input obtained through morphing could then be included in the calculation of a new
enriched SSM. Subsequent recalculations would then necessitate the extraction of
updated PCA and POD components. Any following simulations would thus benefit
from the incorporation of information harvested from this newly integrated model
within the dataset.

Meta-modeling techniques proved quite robust in reproducing the pressure field,
while higher errors were reported for the WSS magnitude, as highlighted in Figure
8.5 (C) and (D). The surrogate models exhibit reduced precision when addressing
flow characteristics possessing high spatial gradients, such as the wall shear stress,
compared to output parameters that are more uniformly smoothed across the domain,
like pressure. Probably, outcomes like the time-averaged wall shear stress derived from
transient simulations, being averaged over all cardiac phases and therefore yielding
reduced spatial heterogeneity [404], would have resulted in lower errors compared to
the individual peak systolic wall shear stress. On wall pressure side, the maximum
prediction discrepancies occurred for patients for which the shape reconstruction
error was high or with a particularly curved shape or constricted areas culminating in
pronounced pressure gradient zones that the ROM was unable to accurately represent,
as shown in Figure 8.7 for patient #11 and #23. In particular, patient #11 exhibits
a narrowing at the end of the descending aortic segment, while patient #23 reveals
it within the Valsalva sinuses area. In case of good agreement between predicted and
real hemodynamics, the Bland-Altman plot should return a mean error around zero.
Conversely, for the aforementioned cases, the zero deviation value either is close
to or even outside the envelope defined by 1.96 times the standard error deviation.
Turning our attention to wall shear stress, from Figure 8.9, we can observe how the
surrogate model tends to smooth out the WSS fluctuations compared with the FOM
ground truth. It seems that high-frequency components of the output are partially

136



8.2 Discussion Real-time hemodynamics prediction

trimmed off when interpolating through the relations learned by the Response Surface
method, as discussed by Du et al. [339]. Patients #10 and #34 are two examples
of models with high wall shear stress prediction errors. Specifically, patient #10
exhibited a higher deviation due to the geometric reconstruction, stemming from
a particularly complex shape of the ascending section. Patient #34, on the other
hand, had a localized surface reconstruction that highly differed from the excluded
original model. These localized characteristics led to significant variations in wall
shear stress. Thus, future endeavours focused on increasing the precision should
place particular attention on the wall shear stress prediction.

In our analysis, the principal sources of discrepancy in the surrogate model
are likely rooted in registration, shape and output field decomposition (POD) and
interpolation. The registration error can be assumed relatively low if considering the
convergence of the ICP. The techniques in reconstructing correspondences amongst
anatomical models are also considered to be robust, primarily due to our employment
of mesh morphing algorithms grounded in the employment of pseudo-landmarks.
This ensures a consistent anatomical alignment between disparate geometries. The
second contribution to the error originates from the reduction in the number of shape
parameters from the SSM and the POD for calculating the pressure and shear stress
fields. In any case, we selected 19 shape mode bases as it provided a cumulative shape
variability of 99% across all np cases in the full ROM. 14 and 21 bases were instead
used for the results. We chose 300 snapshots for creating the ROM because this was
the number needed to reach a plateau in terms of error. However, uncertainty is
introduced due to the choice of modes based on the 36 patients. A more accurate
selection for each surrogate model created with 35 patients during the validation
should be carried out because a different number of shape modes might be needed to
capture 99% of shape variability and a different number of physical modes may be
required in reaching a stable reduction error plateau when constructing the ROM for
pressure and wall shear stress. In [405], 35 shape modes were required to approximate
99% of the variance of the SSM. However, they considered the variability introduced
by including patient-specific superior branches that were not visible using 4D flow
MRI in our work. Finally, the ROM interpolation based on the Response Surface
brings the last contribution to the error. Indeed, extracting the results from the ROM
reconstruction far from the points used to build the Response Surface introduces
discrepancies due to interpolation. We used a Response Surface technique to re-create
the wall pressure and shear stress magnitude fields. It could be replaced by other
interpolation methods such as RBF or neural network interpolations [406]. A deeper
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exploration into these interpolation inaccuracies, juxtaposing the aforementioned
techniques, is crucial before committing to a particular interpolator for clinical
deployment.

Through our established workflow, we have pioneered a pathway to achieve
real-time simulation outcomes within clinical contexts, predominantly leveraging
the online phase of the ROM consumption. Notably, the bulk of computational
intensiveness is anchored in the preceding offline phase dedicated to surrogate model
formulation and generation.

We deliberately abstained from a clinical validation using patient-specific hemo-
dynamic data, conscious of the strong assumptions embedded within our work,
necessitating further data for a rigorous model producing accurate clinical results.
For instance, we included the superior branches with an artificial trick since they
were not visible from the dataset employed. An authentic representation of their
shape and associated blood flow remains imperative for emulating patient-specific
hemodynamic conditions. Of course, it is pertinent to highlight that the rigid-wall
assumption we did tends to overestimate wall pressure and WSS, as discussed in
[128, 407]. Nevertheless, the outcomes of the current study should remain unaffected
by this factor, as our primary objective here was to assess the variability of the
output parameters across full-order and reduced-order techniques.

Further investigations remain imperative to elucidate the intricate interplay
between aortic anatomy, wall properties, hemodynamic patterns and phenomena
like aneurysm expansion or rupture. A holistic prognostic framework, potentially
encompassing shape parameters, medical imaging insights, and simulation-derived
physical outputs, could significantly elevate our predictive ability concerning the
progression of the pathology.

Accurately identifying which patients with AsAA will require surgery within
a specific timeframe would refine the risk-benefit analyses and the definition of
surveillance protocols. A slow-growing ascending aortic aneurysm, in fact, might
not necessitate the rigorous oversight essential for more aggressively expanding
counterparts.

The methodology delineated herein, primarily focused on predicting the ascending
aortic aneurysm hemodynamics, boasts of adaptability across multiple biological
structures or organs, assuming that surface registration between varied domain
forms is feasible and pertinent statistical shape models are procurable. In particular,
we firmly believe that the proposed approach can be applied to several vascular
structures derived from medical images, such as the abdominal aorta, the carotid
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artery or the pulmonary artery.

8.2.2 Limitations and future works

Several assumptions were made and limited the accuracy of the proposed models.
The presented pipeline is only applied for deriving steady-state fluid-dynamic outputs.
On image segmentation side, as discussed in [340], the deep learning method needs
to be refined for the other cardiac phases for which the information contained
in the images is more difficult to extrapolate. In fact, during the systolic peak
phase, the 4D flow presents an optimal signal-to-noise ratio, thereby enhancing
the efficacy of the U-net algorithm. Moving to a transient regime, time-varying
simulations have the advantage of providing more valuable information, potentially
even time-averaged data across the cardiac cycle, such as time-averaged wall shear
stress. For scenarios encompassing transient flows, a recurrent neural network
(RNN) could be implemented to create a surrogate model able to perform the
prediction of several time steps spanning the full cardiac cycle [408]. RNNs are a
class of neural networks specifically designed to manage sequential data such as time
series. In this regard, additional variables should be included for the lumped fluid
dynamic outlet parameters, thereby going beyond the reliance only on the currently
employed resistance in computing the set of steady-state results. Nonetheless,
incorporating parameters as outputs in the Windkessel model augments the parameter
domain, inevitably requiring more simulations in the Design of Experiments. In this
work, we modeled then the Windkessel behaviour by considering only a partition
of the flow based on its percentage distribution while calibrating the resistances
in alignment with these specific percentages. Incorporating additional parameters
could provide the flexibility to more extensively modify the ROM results once the
patient-specific geometry was obtained based on various simulated fluid-dynamic
conditions. Such adaptability is paramount in the development of Digital Twins
designed to swiftly adapt to nuanced changes in the foundational physical model. In
upcoming simulations of the blood flow in the ascending domain, especially those of a
transient nature, the introduction of turbulence models is imperative [409]. Different
patient-specific Reynolds numbers will lead to completely dissimilar behaviours of
the blood flow. When the Reynolds number reaches approximately 2000, the smooth
flow experiences a transition from laminar to turbulent, and this turbulence becomes
fully established in the aorta. To further refine the representation, it is essential
to incorporate additional parameters that cater to the spectrum of flow conditions
observed within our study cohort, ranging from highly laminar to distinctly turbulent
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flow states. This is particularly relevant for hypothetical scenarios wherein the
presence of aortic stenosis accentuates the turbulent behavior of the flow [410]. In
constructing the statistical shape model, it would also be necessary to consider
additional geometric variabilities, mainly related to the aortic valve, as well as the
presence of alterations in the supra-aortic vessels, such as the bovine arch. Shape
modes derived from the valve could be integrated as supplementary input parameters
for the surrogate models [400], offering accurate control over the valve type and
condition. However, in our current analysis, the incorporation of the valve was
infeasible given that the 4D flow MRI resolution that did not provide discernible
valve shapes across individual patients.

Lastly, given that 4D flow MRI offers insights spanning the entire cardiac cycle,
we believe that there exists a potential to establish and fine-tune fluid-structure
interaction models to delve deeper into the biomechanical attributes of the vessel wall.
Beyond this, the scope extends to the integration of input parameters into advanced
surrogate models that encapsulate properties like wall rigidity and thickness. A
Digital Twin capable of predicting the vessel rupture requires, in fact, knowledge
of patient-specific material properties, which in living systems typically evolve over
time and can be estimated by analyzing the deformation of the wall captured from
the images.

8.3 Findings and remarks

In this research, we introduce advanced meta-modeling strategies aimed at predict-
ing hemodynamics within the aortic vessel lumen. The surrogate model is constructed
based on geometry-informed snapshots and non-intrusive reduced-order modelling.
Using surface registration methods combined with geometric decomposition and mesh
morphing techniques establishes a correspondence between the reference template
and target model to be simulated, offering a way to parameterize the shape.

Following this, a surrogate model based on non-intrusive model order reduction
techniques is developed through proper orthogonal decomposition applied to the
geometry-informed physical snapshots. The Response Surface method is applied
to interpolate and predict the reduced physical coefficients to reconstruct specific
hemodynamic outcomes from the reduced-order model based on the geometric
parameters corresponding to shape coefficients and the physical parameters related
to the inlet velocity and output flow resistance.

A validation procedure concerning the wall pressure and wall shear stress magni-
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tude predictions at the systolic peak has been described. The findings demonstrate
the surrogate model’s ability to reproduce the wall pressure. However, they also
shed light on inherent complexities and challenges when attempting to emulate more
complex fields, such as wall shear stress.
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Chapter 9

Conclusions

Future precision medicine is likely to be built upon the concept of Digital Twin,
which involves the dynamic integration and augmentation of patient data through a
combination of computational and statistical models. The potential transformation
of cardiovascular healthcare through the incorporation of Digital Twins represents
both an ambitious goal and an emerging reality. The research for the development
of a Digital Twin is progressing rapidly, but the various fragmented aspects for the
construction of a virtual replica of organs like the aorta still require further in-depth
analysis. This thesis has delved deep into the challenges of realizing this vision, with
specific attention to the thoracic aorta and the associated risks of ascending aortic
aneurysms.

In this work, all difficulties of correctly predicting the evolution of the disease and
the consequences of the treatment approaches have been highlighted. Digital Twins
should ideally be able to incorporate sparse longitudinal clinical data to update their
structure and remain predictive during a consistent time interval of the patient’s
life. These features (real-time results assessment and new data integration) are
core attributes that distinguish Digital Twins from conventional patient-specific
models. Thus, one of the most important aspects in creating a Digital Twin of a
human organ as the aorta is to enable the virtual replica to accurately represent the
patient-specific anatomy during the months of follow-up. To address this, we have
introduced a set of methods for estimating the growth risk and the patient-specific
growth rate, enabling physicians to predict the potential progression of the condition
over the months and estimate the associated risk. By relying on statistical shape
modeling techniques and consistently incorporating data for parameter refinement
and correction, it would be feasible to have a computational model capable of tracking
a patient over multiple months. This would ensure the ongoing extraction of shape
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parameters essential for assessing the risk of potentially severe associated events.
However, growth prediction methods were developed only for the ascending portion
of the aorta, disregarding the significance of encompassing the complete anatomy
of the considered patient. Integrating artificial intelligence and machine learning
techniques could also be explored to continuously refine and optimize the Digital
Twin’s predictive capabilities. These models could aid physicians in assessing the risk
of aneurysm growth and rupture more accurately than traditional methods based
only on the diameter measurements. However, it is essential to note that this work
has presented an approach for predicting growth rate values rather than extracting a
complete computational model of an aneurysm at known temporal distances. Taking
this further step and integrating the Digital Twin into clinical practice, healthcare
providers could stratify patients based on their individualized risk profiles, enabling
more personalized treatment strategies. Furthermore, the deployment of a twin that
is compliant with regulations should require addressing uncertainties. Uncertainty
quantification techniques about the possible evolution of the pathology should be
integrated to account for variations in input parameters, ensuring that the twin
predictions encompass a realistic range of outcomes, for example, of possible shape
deformations during the possible future evolution.

The core of an excellent and well-constructed Digital Twin based on data-driven
reduced-order models will lie in the accuracy of the underlying data. Numerical sim-
ulation approaches were investigated to assess the biomechanical and hemodynamic
behaviours of the thoracic aorta. We focused on computational solid mechanics
and fluid-structure interaction analysis that require a calibration of the structural
boundary conditions at the wall to correctly represent the kinematics of the vessel.
The fundamental new contribution from this thesis lies in introducing a workflow to
increase the model fidelity in representing the aortic kinematics by incorporating
annulus motion effects, aortic interaction with soft tissue and the spine and introduc-
ing wall pre-stress calculation through an inverse analysis to obtain the zero-pressure
geometry. The calibration procedure is performed by optimizing the parameters
managing the Robin boundary conditions using the Levenberg-Marquardt algorithm,
trying to maximize the correspondence between the splines derived from 2D cine-MRI
sequences of the aorta throughout the cardiac cycle and the same splines obtained
from the dynamic computational model. High-fidelity fluid-structure interaction
analysis was implemented only for a single patient due to its computational com-
plexity. It is evident that this method should be extended to a cohort for creating a
Digital Twin. However, the practicality of implementing high-fidelity simulations for
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larger patient cohorts calls for robust computational infrastructures. However, it is
clear that the Digital Twin’s ability to provide accurate information about potential
rupture will depend on the accuracy of the underlying biomechanical models.

In developing clinical applications, the interaction between the clinicians and
the Digital Twin would be facilitated by the rapid assessment of the desired clinical
outcomes. A first constraint in integrating computational fluid-dynamics into the
clinical practice concerns the excessive laboriousness and level of technical expertise
required to prepare and run the model and the related significant computational
time needed. Limited research has focused on reduced-order models derived from
3D aortic simulations and only a few studies have employed non-intrusive model
order reduction techniques to yield hemodynamic parameters. When testing and
validating a surrogate model in predicting hemodynamic variables in almost real-
time, a trade-off between complexity and accuracy should be established. For these
reasons, in our work, we moved from time-variant fluid-structure interaction analysis
to steady-state computational fluid-dynamics simulation at the peak systolic phase
based on the rigid wall assumption. In literature, a huge variability in CFD modeling
of large arteries is discussed. A strategy involving the use of reduced-order models
in an augmented environment has been suggested as an alternative to complex 3D
simulations. They were derived from 3D clinical outcomes using an initial cohort
of 36 patients. The proposed surrogate model was created through in-vivo data,
proving that these methods in future could be applied in clinical environments after
improvements and additional validations based on larger and more accurate dataset.
In fact, the current poor reliability of the blood flow simulation outcomes depends
on the simplified modeling assumptions made and further validations of numerical
results with clinical data are still needed. Using the surrogate model, simulation
results could be assessed in a few seconds for a specific combination of the input
shape modes and for desired fluid-dynamic boundary conditions. Thus, the surrogate
model enables the evaluation of the impact of different clinical situations, such as a
change in the input cardiac jet velocity or a variation in the output flow resistances.
A good correspondence between the wall pressure results of the surrogate model
and the full-order simulations was achieved at the systolic phase. The results were
not as good in terms of wall shear stress due to the high spatial variability of this
output. As technology evolves, refining this balance between accuracy and speed
will be instrumental. An in-depth exploration could be undertaken to evaluate the
impact of wall motion by incorporating an accurate material model that considers
different material-related parameters as input of the surrogate model, in conjunction
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with the proposed fluid model. However, basing such validation on fluid-structure
transient models would involve a high usage of computational resources for which
supercomputers should be strictly required.

The integration of the Digital Twin into the healthcare system could lead to a
paradigm shift in how cardiovascular diseases are managed. Digital Twins can trigger
the transition from a reactive approach, where interventions are primarily determined
by size thresholds and measured parameters, to a proactive approach based on
accurate outcome predictions driven by data-rich insights. These methodological
challenges posed and still represent a significant obstacle in employing AI for induc-
tive reasoning. For instance, ensuring the applicability of findings required external
validation using new patient groups, cohorts from various centres or geographical ar-
eas and multiple assessments of the robustness of the models. Ethical considerations,
data privacy management and effective communication between technical experts
and clinicians become critical aspects of this type of integration. In fact, besides the
technical challenges, additional practical challenges, like privacy, legal ramifications,
accountability and data-sharing protocols should be considered. To date, ethical,
technical and financial constraints still limit the huge data acquisition needed to assist
clinical decision-making [411]. The European General Data Protection Regulation
(GDPR) has introduced new legal obligations, including the right to revoke consent
and the right to have confidential information erased. This has sparked debates
concerning the potential expenses and practicability of enforcement. Any Digital
Twin solution containing sufficient data for patient identification must diligently
adhere to these regulations, which also apply to historical retrospective data [412].
The complexity inherent in aggregating, refining and expanding databases to sup-
port the implementation of an interactive DTs for routine clinical decision-making
can influence the preference for submitting regulatory applications focused on less
complex, passive models grounded in twinning principles. Despite variations in the
objectives, costs, timelines and perceived rigor associated with regulatory approval
processes across different countries or regions, it is noteworthy that products employ-
ing personalized computational models for the purpose of procedure planning are
currently accessible in the market. In addition, information systems and electronic
health records are highly fragmented, heterogeneous and difficult to interoperate.
Clinical information is stored in unstructured formats and its extraction needs either
manual work or further research efforts of automation [143].

One of the hurdles in the adoption process involves enhancing the clarity regarding
the evidence underpinning the creation and validation of a Digital Twin solution
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used to assist in treatment decisions or prognostic assessments. To tackle these
challenges, a close collaboration between clinical, scientific, industrial and regulatory
departments is needed.

Building upon the achievements of this work, further research could delve into
enhancing the precision and predictive capabilities of the Digital Twin model for
ascending aortic aneurysms.

9.1 Future directions

The first potential area of exploration is the refinement and expansion of the
predictive models. The current study showcases the efficacy of shape features
in predicting aneurysm growth risk. We are currently working to incorporate a
wider range of patient-specific data, including genetic markers and hemodynamic
parameters, to create more comprehensive and accurate predictive models.

Future research could extend the model fidelity by incorporating even finer
details, such as accurate patient-specific blood flow dynamics and variations in
vessel wall properties and perform predictive studies not only of growth but also of
rupture. These advancements could provide a more realistic representation of the
complex interactions between fluid and structure. Another significant emphasis lies
in directing research towards developing user-friendly and intuitive methods for non-
technical end-users to engage with Digital Twin-based systems within their respective
domains [413]. New visualization techniques through which individuals without
expertise can interact with AI-generated information about the physical twin within
a mirrored, networked system, should be explored. Advanced augmented reality,
multidimensional holographic projections and 3D avatars are available methods to
reach this goal [414]. Furthermore, the challenge of real-time simulation accuracy
presents innovative research opportunities. Investigating alternative model reduction
techniques and exploring the integration of real-time medical imaging data could
potentially bridge the gap between simulation time and accuracy, enabling real-time
monitoring and prediction. Finally, considering the evolving landscape of healthcare
technology, there is scope for structuring the extension created in 3D Slicer and
developing user-friendly interfaces that translate the sophisticated model outputs
into clinical information for the medical experts.

Overall, we tackled several of the challenges in realizing Digital Twins for clinical
applications, prioritizing follow-up capabilities, accuracy and real-time interaction.
Unfortunately, the majority of the data needed are usually unavailable due to the
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difficulty of making in-vivo flow measurements or because some data can only be
assessed through invasive procedures. Several research perspectives can be foreseen
following the present work outcomes. Firstly, it is evident that it is necessary to
consider not only physiological but also anatomical aspects when assessing the risk
of progression of conditions such as aortic aneurysms. Furthermore, it has been
demonstrated that parameter tuning is feasible to ensure that the vessel reproduces
the real behavior derived from the images at the best. Lastly, a validation procedure
highlighted the strengths and weaknesses of a surrogate model based on reduced-order
models for real-time assessment of relevant fluid dynamic outputs.

By integrating information derived from wearable devices as well, future research
will aim to merge all the aspects studied separately in this work into the development
of a full-fledged Digital Twin for the patient’s follow-up, capable of extracting real-
time anatomical, hemodynamic and biomechanical biomarkers predictive of aortic
aneurysm growth and, ideally, rupture. The potential lies not just in diagnosing
and understanding diseases but in forecasting patient-specific responses and charting
optimal therapeutic pathways. This shift from descriptive to predictive healthcare is
monumental and will undoubtedly reshape clinical strategies.
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Appendix A

A.1 The 3D Slicer Extension

Applications based on medical images involve complex software systems that
require a shared foundation of core functionalities coupled with the capability to be
tailored to particular clinical uses. In a research environment, there is frequently a
need to use prototypes that facilitate the exploration and enhancement of novel algo-
rithms or concepts within the framework of a fully operational end-user application.

In this regard, several methods described in this manuscript were developed in
3D Slicer. 3D Slicer is an open-source software available across multiple platforms,
including Linux, Windows, and MacOSX (http://www.slicer.org). The wide range
of capabilities, extensibility, cross-platform compatibility, and open software license
are key attributes that set 3D Slicer apart from both commercial tools. Developed
over the course of two decades with the support of the National Institutes of Health
and contributions from numerous institutes worldwide, this software is designed to
display and manipulate imaging data of various types such as MRI CT scans. It
is specifically tailored for medical image analysis and visualization, encompassing
features like registration, interactive segmentation tools and volume rendering.

3D Slicer is both contributive and extensible, offering a robust plugin capability
for adding new applications. It provides easy access to libraries like ITK and VTK
(http://www.vtk.org) and allows for the development of fully interactive custom
interfaces in either C++ or Python.

For the purpose of this work, a comprehensive extension was developed in 3D
Slicer. Its development was carried out following the clinicians’ requests from the
university hospitals of Rennes and Dijon, France. This extension has been tested on
3D Slicer versions 4.13, 5.1 and 5.3 for both Windows and macOS. It consisted of three
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modules. The first focused on model segmentation and local shape feature extraction.
The second dealt with the statistical shape models, allowing the computation of the
global shape features, while the third exploited the surrogate modeling techniques to
augment medical images with results derived from numerical simulation. Through
this extension, the user could easily upload the DICOM images of the patient and
extract additional outcomes to perform analysis and prediction through a few steps
and in a reduced time.

The semi-automatic segmentation method introduced in Sections 3.2.2 was im-
plemented within the 3D Slicer environment (Figure A.1). In this regard, a specific
extension was created to extract from both CT-scan and MRI angiographies the
anatomical model of the aorta. The automatic method partially discussed in Section
5.2.2 was later introduced in 3D Slicer, thus allowing the possibility of also deriving
the geometry of the aorta from 4D flow MRI. From these segmentations, some man-
ual post-processing steps could be required. In this regard, the option to manually
modify portions of the aortic geometry or trim unwanted parts of the aorta was
incorporated, integrating functions already implemented by other modules within
3D Slicer. Of course, the option to save the realized segmentations and load them
later without starting from scratch had been implemented.

Figure A.1: Segmented model using the tailor-made 3D Slicer extension.

The centerline computation and the geometric decomposition described in Section
3.2.3 were performed using the first module of the 3D Slicer extension. This allowed
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the user to visualize a report table containing the local shape features values and other
distinctive information related to the patient’s ascending aorta, as shown in Figure
A.2. The ability to generate an Excel file was established, which included the trend
of mean and maximum diameter along the centerline and all data from geometric
decomposition; this also included storing specific screenshots of the anatomical model.
The analysis of each aortic model thus became simple and rapid, and even the medical
staff was able to extract information with very few interactions by means of the
dedicated user interface.

Figure A.2: Execution of shape analysis and automatic extraction of local shape features
using the 3D Slicer extension.

The second module of the extension, on the other hand, was related to the rigid
registration of models and shape analysis based on statistical shape modeling. The
iterative closest point algorithm was configured to align new segmentations performed
or imported with known templates (Figure A.3). Within the same module, mesh
morphing libraries were also integrated to adapt the statistical shape model template
of the ascending aorta or, in general, of the thoracic aorta to the aligned segmented
models using the Source Points sampled from the created splines. When importing
the statistical shape model, the deformations defined by the modal components
derived from the principal component analysis were loaded into the extension, thus
ensuring the ability to observe the effect of modes on the aortic template, as displayed
in Figure A.4. The same module allowed to perform the least square fitting of the
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statistical shape model for reproducing the computational mesh using the PCA bases,
as described in Section 5.2.9.

Figure A.3: Ascending aortic aneurysm shape aligned to the statistical shape model
template through iterative closest point.

Figure A.4: Template of the statistical shape model deformed by a linear combination of
shape modes.
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Finally, the third module developed in this extension enabled the augmented
reality environment where the simulation results derived from the surrogate models
could be observed overlaid onto the patient’s medical images, whose transparency
could be directly controlled by the operator (Figure A.5). The surrogate models,
previously created through model order reduction, as described in Section 5.2.7,
were loaded and controlled as Functional Mock-up Units (see Section 5.2.8). They
allowed the display of contours of outcomes of interest on specific surfaces. The
inputs for each surrogate model consisted of the modal weight coefficients from the
previously conducted fitting and the two physical parameters controlling the inlet
velocity profile and the outlet resistances. The outputs, on the other hand, included
the modal coefficients of the physical ROMs (wi of equation 5.2.7) which, together
with the already known eigenvectors, allowed for the reconstruction of the numerical
solution results in just a few milliseconds during the online phase. After importing
the surrogate models into the module, the user could interact with them using specific
sliders to observe the effect of input parameter variations on the selected output
hemodynamic parameters. Among the first future developments, there will be the
possibility of computing vectors and streamlines to reproduce the blood flow in the
lumen domain.

Figure A.5: Computation of hemodynamics in (almost) real-time by exploiting the surrogate
model obtained by means of model order reduction: pressure at the wall superimposed on
the DICOM of the 4D flow MRI.
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The methods proposed in the previous publication were accurately described in the
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Bourgogne, France.
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aorta model.", June 2023, Vail, Colorado, USA.

• Daniel Guilmet award MASH Congress 2023. Second place: "A semi-
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I.3 Technology transfer

A publication related to the research contained in Chapters 5 and 8 has been
prepared. However, the methods proposed in those parts integrated with the 3D
Slicer prototype described in the Appendix are fundamental parts of a business plan
evaluated in the regional (Regione Lazio) Start-Cup competition, where the business
idea prepared from April 2023 to September 2023 and presented has reached the
finals scheduled for the end of October 2023. For these reasons, the publication has
not been submitted, the code related to the 3D Slicer extension described in the
Appendix A has not yet been published in any open-access online repository and the
material is treated with the utmost confidentiality.
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