

RBF Morph

Enabling Medical Digital Twin through Advanced Mesh Morphing and High-Fidelity Patient-Specific Simulations

Marco Evangelos Biancolini Company founder @RBF Associate Professor @UTV

We make CAE models parametric

- RBF Morph makes the CAE model parametric
- Shape parameters are driven by **an orchestrator**
- Shape parameters can be used to generate snapshots for real time Digital Twins (**ROM/AI**)

Radial Basis Functions mesh Morphing

 Geometric control by Radial Basis Functions mesh Morphing

o Surface shape changeso Volume mesh adaption

• A new shape of the CAE model ready to run

o for structures in the FEA solver o for flows in the CFD solver

Radial Basis Functions mesh Morphing

- We offer Radial Basis Functions (RBF) to drive mesh morphing (smoothing) from a list of source points and their displacements
- RBF are recognized to be one of the **best mathematical tool** for mesh morphing

$$\begin{cases} s_{x}(\boldsymbol{x}) = \sum_{i=1}^{N} \gamma_{i}^{x} \varphi(\|\boldsymbol{x} - \boldsymbol{x}_{s_{i}}\|) + \beta_{1}^{x} + \beta_{2}^{x} \boldsymbol{x} + \beta_{3}^{x} \boldsymbol{y} + \beta_{4}^{x} \boldsymbol{z} \\ s_{y}(\boldsymbol{x}) = \sum_{i=1}^{N} \gamma_{i}^{y} \varphi(\|\boldsymbol{x} - \boldsymbol{x}_{s_{i}}\|) + \beta_{1}^{y} + \beta_{2}^{y} \boldsymbol{x} + \beta_{3}^{y} \boldsymbol{y} + \beta_{4}^{y} \boldsymbol{z} \\ s_{z}(\boldsymbol{x}) = \sum_{i=1}^{N} \gamma_{i}^{z} \varphi(\|\boldsymbol{x} - \boldsymbol{x}_{s_{i}}\|) + \beta_{1}^{z} + \beta_{2}^{z} \boldsymbol{x} + \beta_{3}^{z} \boldsymbol{y} + \beta_{4}^{z} \boldsymbol{z} \end{cases}$$

Main uses of RBF Morph

Automated and quick variable design space exploration.	\checkmark	\checkmark		
Optimization (Single physics or multi-physics). Shape optimization for stress reduction, mass reduction, fluid-structure interaction	\checkmark	\checkmark	\checkmark	
Digital twin development (static ROMs)	\checkmark	\checkmark	\checkmark	\checkmark
Lifing applications Simulate defects such as corrosion pits, spalling of material, erosion, chips, etc.	\checkmark	\checkmark		
Examine the effects of non-conformance and manufacturing variability	\checkmark	\checkmark		
Robust Design	\checkmark	\checkmark	\checkmark	

EU-funded research projects

MeDiTATe Endovascular Medominal Aneurysm Repair

MeDiTATe Endovascular Medominal Aneurysm Repair

Medical Digital Twin Copernicus

to support systemic pulmonary shunting procedures

RBF Morph - www.rbf-morph.com

Medical Digital Twin Copernicus

Medical Digital Twin Copernicus

🖳 Build 🧮 Validate 斗 Evaluate	- Points Size: 0.00 + Views : Parts: all OutPlane0 🖉
Available ROM:	
] velocity	
	velocity
	Velocity Magnitude (m/s)
	1.88
Dalata Danama	1.74
Delete	1.59
ROM Information	1.45
Name: velocity	
Parameters: 12	1.16
Learning Snapshots : 120	1.02
Modes : 18	0.873
rsion : 2022R1	0.729
	0.584
Export to Twin builder	0,44
	0.296
Evaluate Roms	0.151
it parameters :	0.00701
ameter Value	
1_vol -1.50000+01 0	
2_vol -3.40000+01 0	
_1_vol	

rbf

3) Digital twin

1) Scan of lungs

2) Extraction of lung shape parameters

4) Visualization and interpretation for medical use

RBF Morph - www.rbf-morph.com

- Base geometry is obtained from literature
 - ✓ Constructed from several high-resolution CT scans of 47 year old healthy volunteer
 - ✓ The base geometry has been studied in multiple experimental and numerical studies
 - Includes up to the 4th generation (note, human lungs go up to 23 generations)
- Identify relevant input parameters for the digital twin
 - ✓ Shape
 - ✓ Flow
 - ✓ Particle

Z. Zhang, C. Kleinstreuer and S. Hyun, "Size-change and deposition of conventional and composite cigarette smoke particles during inhalation in a subject-specific airway model," *Journal of Aerosal Science*, vol. 46, pp. 34-52, 2012.
S. Kenjereš and J. L. Tjin, "Numerical simulations of targeted delivery of magnetic drug aerosols in the human upper and central respiratory system: a validation study," *Royal Society Open Science*, vol. 4, no. 12, p. 170873, 2017.

- Potentially a huge amount of shape parameters!
- Amount of input parameters is limited by assuming:
 - ✓ Circularity is kept constant
 - \checkmark Only considered angle is the branching angle
 - ✓ Diameter follows a fixed ratio6 of h=0.79
- Mouth-throat part: 3 parameters
- Lower airways: 23 parameters
 - ✓ Generation 0 (trachea): 1L, 1D, 1A
 - ✓ Generation 1: 2L, 2A
 - ✓ Generation 2: 4L, 4A
 - ✓ Generation 3:8L

T. Van de Moortele et al.; "Morphological and functional properties of the conducting human airways investigated by in vivo computed tomography and in vitro MRI"

	Diameter	Length [n	Branching	
Generation	[mm]	Left	Right	angle [deg]
0 (Trachea)	15 - 20	100 -	- 120	80 - 95
1		51 - 57	24 - 28	75 - 90
2		12 - 16	15 - 28	65 - 95
3		7 - 10	7 - 10	55 - 70

https://www.flickr.com/photos/aceofknaves/25604600281/

Physical parameters: 3 parameter

- ✓ Flow rate varies between 15 L/min and 120 L/min
- \checkmark Particle size varies between 0.1 μm and 10 μm
- ✓ Particle injection rate varies between 0 m/s and 10 m/s

26 shape parameters and 3 physical parameter

29 input parameters in total

- Design Of Experiments (DOE) table is generated:
 - \checkmark For the 29 input parameters
 - ✓ Using the Latin Hypercube Sampling for optimal spacing
 - \checkmark Creating 1000 design points
- Fluent settings validated in literature
 - ✓ Steady state
 - ✓ RANS, transitional SST (4eq)
 - \checkmark Particles are one-way coupled

Ansys Twin Builder

rbf

* <u>https://www.ff4eurohpc.eu/en/experiments/2022031514424665/digitaltwin_for_airflow_an_d_drug_delivery_in_human_airways</u>

rbi

RBF Morph - www.rbf-morph.com

Ansys RBF Morph products

 An RBF mesh morphing solution fully embedded in Ansys

o RBF Morph Fluids – an Add On for Fluent
o RBF Morph Structures – an ACT App for Mechanical

- Full integration with optiSLang and Twin Builder
- Support for LS-DYNA and APDL

https://www.rbf-morph.com/wp-content/uploads/2023/05/RBFMorph_Brochure.pdf

New RBF Morph Stand Alone

- To be released in 2024
- Read in STL, STEP
- Unity OpenCascade
- Solver independent process that supports many mesh formats
- Scriptable via python

Next step? A complete solution to deliver interactive digital twins with AR/VR custom UI

- FMU are translated to ARM
- Meta Quest 3

rbf

• Input parameters are controlled by hands

Conclusions

- Medical Digital Twins are feasible today!
- The **In Silico** path, i.e. MDT driven by high fidelity simulations, is ready and requires
 - o Patient specific data (from images)
 - o State of the art multi-physics simulation
 - o Reduced order models and advanced **Meta** mesh morphing
- A clear business model is required

 Public funds are today the major resource
 Certification is complex
- We are moving in the right direction and there is **mainstream focus** on Medical Digital Twins

RBF Morph - www.rbf-morph.com

Thank you!

marco.biancolini@rbf-morph.com

linkedin.com/company/rbf-morph

youtube.com/user/RbfMorph

rbf-morph.com